机器学习-KFold交叉验证

Section I: Brief Introduction on StratifiedKFold

A slight improvement over the standard k-fold cross-validation approach is stratified k-fold cross-validattion, which can yeild better bias and variance estimates, especially in case of unequal class proportions. In stratified cross-validattion, the class proportionss are preserved in each fold to ensure that each fold is representative of the class proportions in the training dataset.

FROM
Sebastian Raschka, Vahid Mirjalili. Python机器学习第二版. 南京:东南大学出版社,2018.

Section II: Code and Analyses

代码

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
import numpy as np
from sklearn.model_selection import StratifiedKFold
import warnings
warnings.filterwarnings("ignore")

#Section 1: Load Breast data, i.e., Benign and Malignant
breast=datasets.load_breast_cancer()
X=breast.data
y=breast.target
X_train,X_test,y_train,y_test=\
    train_test_split(X,y,test_size=0.2,stratify=y,random_state=1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值