机器学习基石ch4

四、Feasibility of Learning

机器学习的可能性。

4.1 Learning is Impossible

学习可能是做不到的。

在训练样本集(in-sample)中,可以求得一个最佳的假设g,该假设最大可能的接近目标函数f,但是在训练样本集之外的其他样本(out-of-sample)中,假设g和目标函数f可能差别很远。

 

4.2 Probability to the Rescue

可能的补救方式。

通过上一小节,我们得到一个结论,机器学习无法求得近似目标函数f的假设函数g。

回忆在以前学过的知识中,有无遇到过类似的问题:通过少量的已知样本推论整个样本集的情况。

是否想到一个曾经学过的知识,其实就是概率统计中的知识。

通过一个例子来复习下该知识。有一个罐子,这个罐子里盛放着橙色和绿色两种颜色的小球,我们如何在不查遍所有小球的情况下,得知罐子中橙子小球所占的比例呢?抽取样本,如图4-1所示。

 

图4-1 抽取样本

 

假设罐子中橙色小球的概率为,不难得出绿色小球的概率为,其中 为未知值;

而通过抽样查出的橙色小球比例为,绿色小球的比例为 是从抽样数据中计算出的,因此为已知值。

如何通过已知样本,求得未知的样本

可以想象到,在很大的几率上接近的结果。因为在罐子里的小球均匀搅拌过后,抽出小球中的橙色小球比例很有可能接近整个罐子中橙色小球的比例,不难想象在抽出的小球数量等于罐中小球数量时,两者完全一致。

这其中不了解的是,到底有多大的可能性两者接近?此处使用数学的方式给予答案,如公式4-1所示。

 

    (公式4-1)

 

该公式称之为霍夫丁不等式(Hoeffding's Inequality),其中P为概率符号, 表示的接近程度, 为此程度的下界,N表示样本数量,其中不等式左边表示 之间相差大于某值时的概率。从该不等式不难得出,随着样本量的增大, 相差较大的概率就不断变小。两者相差越多,即越大,该概率越低,就意味着 相等的结论大概近似正确(probably approximately correct PAC)。

同时可以得出当N足够大时,能够从已知的 推导出未知的

 

4.3 Connection to Learning

联系到机器学习上。

上一节得出的结论可以扩展到其他应用场景,其中包括机器学习。

为方便理解,做一个对比表,如表4-1所示。

 

表4-1 机器学习与统计中的对比

罐子小球

机器学习

未知的橙色小球比例

某一确定的假设在整个X输入空间中,输入向量x满足条件 的占整个输入空间的比例

抽取的小球∈整个罐子中的小球

训练输入样本集 整个数据集X

橙色小球

假设h作用于此输入向量x与给定的输出不相等

绿色小球

假设h作用于此输入向量x与给定的输出相等

小球样本是从罐子中独立随机抽取的

输入样本x是从整个数据集D中独立随机选择的

 

更通俗一点的解释上表表达的内容:训练输入样本集类比随机抽取的小球样本;此样本集中,先确定一个假设函数h,满足条件的输入向量x占整个样本的比例类比于橙色小球在随机抽取小球样本的比例,写成公式的形式可以入公式4-2所示;因此使用上一节中的PAC((可能近似正确的理论),在整个输入空间中这个固定的假设函数h同目标函数f不相等的输入量占整个输入空间数量的概率 的取值如公式4-3所示)与上述随机样本中两个函数不相等的样本数占抽样数的比例 相同,这一结论也是大概近似正确的。

 

(公式4-2)

(公式4-3)

 

其中N为随机独立抽样的样本数,X为整个输入空间, 满足条件为1否则为0,E为取期望值。

对1.4节的机器学习流程图进行扩展,得到如图4-2所示。

 

图4-2 引入统计学知识的机器学习流程图

 

其中虚线表示未知概率P对随机抽样以及概率 的影响,实线表示已经随机抽出的训练样本及某一确定的假设对比例 的影响。

得出的结论如下:对任意已确定的假设函数h,都可以通过已知的求出未知的

以后我们将使用 这种专业的符号,分别表示在某一确定的假设函数h中,随机抽样得到的样本错误率和整个输入空间的错误率,同样可以使用霍夫丁不等式对以上得到的结论做出相应的数学表达,如公式4-4所示。

 

    (公式4-4)

 

但是,我们想得到的不是给定一个已确定的假设函数h,通过样本的错误比例来推断出在整个输入空间上的错误概率,而是在整个输入空间上同目标函数f最接近的假设函数h。

那如何实现最接近呢?说白了错误率最低。只需在上述结论上再加一个条件,即错误比例 很小即可。总结下,在结论基础之上,加上 很小,可以推出 也很小,即在整个输入空间中h≈f。

上面说了那么多,可能很多人已经糊涂了,因为这并不是一个学习问题,而是一个固定假设函数h,判断该假设函数是否满足上述性质,这准确的讲是一种确认(Verification),确实如此,这种形式不能称为学习,如图4-3所示。

 

图4-3 确认流程图

 

4.4 Connection to Real Learning

联系到真正的学习上。

首先我们要再次确认下我们上一小节确定的概念,要寻找的是一个使得 很小的假设函数h,这样就可以使得h和目标函数f在整个输入空间中也很接近。

继续以丢硬币为例,形象的观察这种学习方法有无问题,如图4-4所示。

 

图4-4 丢硬币的例子

 

假设有150个人同时丢五次硬币,统计其中有一个人丢出五次全部正面向上的概率是多少,不难得出一个人丢出五次正面向上的概率为 ,则150人中有一人丢出全正面向上的概率为

这其中抛出正面类比于绿色小球的概率也就是。当然从选择的角度肯定要选择犯错最小的,即正面尽可能多的情况,此例中不难发现存在全部都为正面的概率是非常大的,此处应注意,选择全为正面的或者说 为0 并不正确(因为想得到的结果是 ,而不是99%)这一结论与真实的情况或者说 差的太远(我们不仅仅要满足 很小条件,同时还要使得 不能有太大差距)。因此这种不好的样本的存在得到了很糟糕的结果。

上面介绍了坏的样例(bad sample),把本来很高的,通过一个使得的坏抽样样本进行了错误的估计。

到底是什么造成了这种错误,要深入了解。我们还需要介绍坏的数据(bad data)的概念。(这里写一下自己的理解,坏的样本bad sample∈坏的数据bad data)

坏的数据就是使得 相差很大时,抽样到的N个输入样本(我的理解不是这N个输入样本都不好,可能只是有几个不好的样本,导致该次抽样的数据产生不好的结果,但此次抽样的数据集被统一叫做坏的数据),根据霍夫丁不等式这种情况很少出现,但是并不代表没有,特别是当进行假设函数的选择时,它的影响会被放大,以下进行一个具体的说明,如表4-2所示。

 

表4-2 单个假设函数时的霍夫丁不等式

 

D1

D2

D1126

D5678

霍夫丁

h

BAD

    

BAD

 

 

计算所有不好的D出现的概率如公式4-5所示。

 

    (公式4-5)

 

单一假设函数中不好的D出现的概率其实不算高,但是当在做选择时,面对的是从整个假设空间选出的无数种可能的假设,因此不好D的计算就有所改变,当然我们先讨论假设函数是有限多种的情况,如表4-3所示。

 

表4-3 M个假设情况下的霍夫丁不等式

 

D1

D2

D1126

D5678

霍夫丁

 

BAD

    

BAD

 

  

BAD

     

 

BAD

BAD

   

BAD

 

 

        
 

BAD

    

BAD

 

ALL

BAD

BAD

   

BAD

 

?

 

这其中包含了M个假设,而不好的D不是由单一假设就确定的,而是只要有一个假设在此抽样D上表现不好则该抽样被标记为坏的,因此霍夫丁不等式如公式4-6所示。

 

(联合上界)

    (公式4-6)

 

因此如果|H|=M的这种有限情况下,抽样样本N足够大时,可以确保假设空间中每个假设都满足

如果通过算法找出的g满足 ,则通过PAC的规则可以保证

源码地址: https://pan.quark.cn/s/a4b39357ea24 欧姆龙触摸屏编程软件MPTST 5.02是专门为欧姆龙品牌的工业触摸屏而研发的编程解决方案,它赋予用户在直观界面上构建、修改以及排错触摸屏应用程序的能力。 该软件在工业自动化领域具有不可替代的地位,特别是在生产线监视、设备操控以及人机互动系统中发挥着核心作用。 欧姆龙MPTST(Machine Process Terminal Software Touch)5.02版本配备了多样化的功能,旨在应对不同种类的触摸屏项目要求。 以下列举了若干核心特性:1. **图形化编程**:MPTST 5.02采用图形化的编程模式,允许用户借助拖拽动作来设计屏幕布局,设定按钮、滑块、指示灯等组件,显著简化了编程流程,并提升了工作效率。 2. **兼容性**:该软件能够适配欧姆龙的多个触摸屏产品线,包括CX-One、NS系列、NJ/NX系列等,使用户可以在同一个平台上完成对不同硬件的编程任务。 3. **数据通信**:MPTST 5.02具备与PLC(可编程逻辑控制器)进行数据交互的能力,通过将触摸屏作为操作界面,实现生产数据的显示与输入,以及设备状态的监控。 4. **报警与事件管理**:软件中集成了报警和事件管理机制,可以设定多种报警标准,一旦达到预设条件,触摸屏便会展示对应的报警提示,助力操作人员迅速做出响应。 5. **模拟测试**:在设备实际连接之前,MPTST 5.02支持用户进行脱机模拟测试,以此验证程序的正确性与稳定性。 6. **项目备份与恢复**:为了防止数据遗失,MPTST 5.02提供了项目文件的备份及还原功能,对于多版本控制与团队协作具有显著价值。 7. **多语言支持**:针对全球化的应...
本资源包为流体力学与化学传质交叉领域的研究提供了一套完整的数值模拟解决方案,重点针对湍流条件下通道内溶解物质的输运与分布规律进行定量分析。该工具集专为高等院校理工科专业的教育与科研需求设计,尤其适合计算机科学、电子工程及数学等相关学科的本科生在完成课程项目、综合设计或学位论文时使用。 软件环境兼容多个版本的MatLAB平台,包括2014a、2019b及后续的2024b发行版,确保了在不同实验室或个人计算环境中的可移植性。资源包内预置了经过验证的示例数据集,用户可直接调用主程序执行计算,显著降低了初始学习成本,使初学者能够迅速掌握基本操作流程。 代码架构采用模块化与参数驱动设计。所有关键物理参数(如流速、扩散系数、边界条件等)均集中于独立的配置模块,用户无需深入底层算法即可灵活调整计算条件,从而高效模拟多种湍流溶解场景。程序逻辑结构清晰,各功能段均配有详尽的说明注释,既阐述了数值方法的理论依据,也解释了关键步骤的实现意图,便于使用者理解模型构建过程并进行针对性修改。 在学术训练方面,本工具能够帮助学生将抽象的流体动力学与传质理论转化为可视化的数值实验结果,深化对湍流混合、浓度边界层等概念的理解。对于毕业设计或专题研究,其参数化框架支持用户嵌入自定义模型,开展创新性数值实验,为深入研究复杂流动中的溶解机制提供可靠的技术支撑。 总体而言,该MATLAB分析工具集通过结构化的代码设计、完备的案例支持与广泛的版本兼容性,为流体溶解现象的数值研究提供了一个高效、可扩展的计算平台,兼具教学示范与科研探索的双重价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值