【Pwnable.kr】 第五题 random

本文解析了Pwnable.kr平台上的随机数题目,揭示了rand()函数的默认行为,即在未调用srand()时,系统将srand()自动初始化为1。通过C语言测试程序确认了这一行为,并提供了利用该特性的解题思路。

Pwnable.kr】 第六题 random


源代码:

#include <stdio.h>

int main(){
	unsigned int random;
	random = rand();	// random value!

	unsigned int key=0;
	scanf("%d", &key);

	if( (key ^ random) == 0xdeadbeef ){
		printf("Good!\n");
		system("/bin/cat flag");
		return 0;
	}

	printf("Wrong, maybe you should try 2^32 cases.\n");
	return 0;
}

解题经过

在这里虽然没有可以造成栈溢出的输入,但是查询百度之后发现:

函数rand()是真正的随机数生成器。而srand()会设置供rand()使用的随机数种子。
假设你在第一次调用rand()之前没有调用srand(),那么系统会为你自己主动调用srand()。并且自动赋值为1

所以用C写了一个测试程序

#include <stdio.h>

int main(){
   unsigned int r;
   r = rand();
   printf("%d\n",r);
   return 0;
}

其结果是
在这里插入图片描述
所以只要用0xdeadbeef ^ 1804289383 就是我们要输入的内容
在这里插入图片描述

### pwnable.kr bof目概述 pwnable.kr 是一个著名的在线渗透测试练习平台,bof(Buffer Overflow,缓冲区溢出)目是其中经典类型。缓冲区溢出通常是由于程序没有正确检查用户输入的长度,导致输入的数据超出了缓冲区的边界,从而覆盖相邻的内存区域,可能改变程序的执行流程。 ### 解思路与步骤 #### 1. 环境准备 首先需要在本地搭建好调试环境,安装必要的工具,如`gdb`(GNU调试器)、`pwntools`(Python 库,用于编写漏洞利用脚本)等。例如,使用`pwntools`可以方便地与远程服务器进行交互。 ```python from pwn import * # 连接到远程服务器 p = remote('pwnable.kr', 9000) ``` #### 2. 分析程序 - **反汇编**:使用`objdump`或`gdb`对目标程序进行反汇编,查看程序的汇编代码,了解程序的逻辑和函数调用关系。例如,使用`objdump -d bof`可以得到程序的反汇编代码。 - **检查漏洞点**:重点关注程序中存在缓冲区操作的函数,如`gets`、`strcpy`等,这些函数通常不检查输入的长度,容易引发缓冲区溢出漏洞。 #### 3. 确定缓冲区大小 通过调试程序,向程序输入不同长度的数据,观察程序的行为,确定缓冲区的大小。可以使用`gdb`设置断点,在关键位置查看栈的状态。 ```python # 构造不同长度的测试数据 test_data = 'A' * 10 p.sendline(test_data) ``` #### 4. 覆盖返回地址 当确定了缓冲区大小后,构造恶意输入,覆盖程序的返回地址。返回地址是函数调用结束后程序要跳转执行的地址,通过覆盖它可以改变程序的执行流程。 ```python # 计算返回地址的偏移量 offset = 44 # 假设偏移量为 44 # 构造恶意输入 payload = 'A' * offset # 获取目标地址(如系统函数地址) target_address = p64(0xdeadbeef) payload += target_address p.sendline(payload) ``` #### 5. 利用漏洞执行任意代码 - **调用系统函数**:如果程序中存在可利用的系统函数(如`system`),可以通过覆盖返回地址,将程序的执行流程引导到这些函数上,并传入合适的参数(如`/bin/sh`),从而获得一个 shell。 - **ROP 链**:如果程序中没有合适的系统函数可以直接调用,可以使用 ROP(Return Oriented Programming,面向返回编程)技术,通过拼接多个小的代码片段(gadget)来实现复杂的功能。 ```python # 构造 ROP 链 rop = ROP(elf) # 查找合适的 gadget pop_rdi = rop.find_gadget(['pop rdi', 'ret'])[0] bin_sh = next(elf.search(b'/bin/sh')) system_addr = elf.symbols['system'] # 构造 ROP 链 rop.raw(pop_rdi) rop.raw(bin_sh) rop.raw(system_addr) # 构造最终的 payload payload = 'A' * offset + str(rop) p.sendline(payload) ``` ### 技术分析 #### 缓冲区溢出原理 缓冲区溢出是由于程序对输入数据的长度没有进行有效的检查,导致输入的数据超出了缓冲区的边界,覆盖了相邻的内存区域。在栈上,函数调用时会保存返回地址等信息,当缓冲区溢出发生时,返回地址可能被覆盖,从而改变程序的执行流程。 #### 栈布局与内存管理 了解栈的布局对于利用缓冲区溢出漏洞至关重要。栈是一种后进先出的数据结构,函数调用时会在栈上分配空间,保存局部变量、参数和返回地址等信息。通过调试和分析栈的状态,可以确定缓冲区的位置和返回地址的偏移量。 #### 保护机制绕过 现代操作系统和编译器通常会采用一些保护机制,如 ASLR(地址空间布局随机化)、Canary(栈保护)等,来防止缓冲区溢出漏洞的利用。在解过程中,需要了解这些保护机制,并寻找相应的绕过方法。例如,对于 ASLR,可以通过泄露程序的基地址来绕过;对于 Canary,可以通过泄露 Canary 的值来绕过。 ### 总结 解决 pwnable.kr 的 bof 目需要掌握缓冲区溢出的基本原理、调试技巧和漏洞利用技术。通过不断地练习和实践,可以提高对漏洞的分析和利用能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值