汉诺塔问题是一个经典的问题。汉诺塔(Hanoi Tower),又称河内塔,源于印度一个古老传说。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,任何时候,在小圆盘上都不能放大圆盘,且在三根柱子之间一次只能移动一个圆盘。问应该如何操作?
分析:对于这样一个问题,任何人都不可能直接写出移动盘子的每一步,但我们可以利用下面的方法来解决。设移动盘子数为n,为了将这n个盘子从A柱移动到C柱,可以做以下三步:
(1)以C柱为中介,从A柱将1至n-1号盘移至B柱;
(2)将A柱中剩下的第n个盘移至C柱;
这样问题解决了,但实际操作中,只有第二步可直接完成,而第一、三步又成为移动的新问题。以上操作的实质是把移动n个盘子的问题转化为移动n-1个盘,那一、三步如何解决?事实上,上述方法设盘子数为n, n可为任意数,该法同样适用于移动n-1个盘。因此,依据上法,可解决n -1个盘子从A柱移到B柱(第一步)或从B柱移到C柱(第三步)问题。现在,问题由移动n个盘子的操作转化为移动n-2个盘子的操作。依据该原理,层层递推,即可将原问题转化为解决移动n -2、n -3… … 3、2,直到移动1个盘的操作,而移动一个盘的操作是可以直接完成的。至此,我们的任务算作是真正完成了。而这种由繁化简,用简单的问题和已知的操作运算来解决复杂问