51nod 1490 多重游戏

本文介绍了一个两人轮流添加字符的游戏,并对该游戏进行了改进,即多次游戏且失败者成为下一轮的先手。通过构建Trie树并使用动态规划来判断最终是先手获胜还是后手获胜。

1490 多重游戏
题目来源: CodeForces
基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注
有一个两人游戏,游戏是这样的,有n个非空串。在游戏的过程是,两个玩家轮流向一个字符串后面加字母,刚开始字符串是空的。每一次操作是向当前字符串后面添加字符,形成的新字符串一定要是这n个串中某一个或几个的前缀,如果无法做到,就输了。
这样的游戏似乎过于简单了,现在对这个游戏进行一下改进,让玩家玩K次这样的游戏,第i次的败者,将会作为第i+1次的先手进行这个游戏。第k次游戏的赢家就是整个游戏的赢家。
现在给定n个字符串和k,问是先手胜还是后手胜。

Input
单组测试数据。
第一行有两个整数n 和 k (1 ≤ n ≤ 10^5; 1 ≤ k ≤ 10^9)
接下来n行每一行有一个非空串。字符串的总长度不超过10^5,都由小字母构成。
Output
如果先手胜输出First,否则输出Second。
Input示例
2 3
a
b
Output示例
First

分析

建立一棵trie,然后在trie上按照先手必胜 先手必败 可输可赢 不能控制4种状态进行树dp即可

代码

#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define fe(i,a,b) for(int i=be[a];i;i=b[i].ne)
using namespace std;
int ch[150000][26],ct;
int g[150000];
int n,k;
char st[100050];
void insert(char *s){ 
    int l=strlen(s),x=0,tc;
    fo(i,0,l-1){
        tc=s[i]-'a';
        if (!ch[x][tc])
            ch[x][tc]=++ct;
        x=ch[x][tc];
    }
}
void dfs(int x){
    bool vis=0;//
    fo(i,0,25)
        if (ch[x][i]){
            vis=1; 
            dfs(ch[x][i]);
            g[x]|=g[ch[x][i]]^3;
        }
    if (!vis) g[x]=1;
}
int main(){
    scanf("%d%d",&n,&k);
    fo(i,1,n){
        scanf("%s",st);
        insert(st);
    }
    dfs(0);
    //printf("%d\n",g[0]);
    if (g[0]==0){
        printf("Second\n");
    }
    if (g[0]==1){
        printf("Second\n");
    }
    if (g[0]==2){
        if (k&1) printf("First\n");else printf("Second\n");
    }
    if (g[0]==3){
        printf("First\n");
    }
    return 0;
}
题目 51nod 3478 涉及一个矩阵问题,要求通过最少的操作次数,使得矩阵中至少有 `RowCount` 行和 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行和列组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行和每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行和列组合**: - 由于 `N` 和 `M` 的最大值为 8,因此可以枚举所有可能的行组合和列组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行和列需要修改,并且注意行和列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举和位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float('inf') # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行和每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行和列组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行和列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` 和 `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行和列的枚举组合以减少计算时间? 2. 在计算行和列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行和列的回文条件不同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值