P2341 受欢迎的牛

题目描述

每一头牛的愿望就是变成一头最受欢迎的牛。现在有 N 头牛,给你 M 对整数,表示牛 A 认为牛 B 受欢迎。这种关系是具有传递性的,如果 A 认为 B 受欢迎,B 认为 C 受欢迎,那么牛 A 也认为牛 C 受欢迎。你的任务是求出有多少头牛被除自己之外的所有牛认为是受欢迎的。

输入描述

第一行两个数 N,M;
接下来 M 行,每行两个数 A,B,意思是 A 认为 B 是受欢迎的(给出的信息有可能重复,即有可能出现多个 A,B)。

输出描述

输出被除自己之外的所有牛认为是受欢迎的牛的数量。

样例输入
3 3
1 2
2 1
2 3
样例输出
1

我们先把这道题分成两种情况来讨论

第一种情况:不存在环

首先来画一个图

观察一下每个点的出度

在这幅图中,最受欢迎的牛是3, 那么,是否是出度为零的点就最受欢迎呢?

再来看一下

此时,点4的出度也为零,但是,这张图没有最受欢迎的牛,因为条件是除自己以外,所有人都认为它受欢迎才行,所以,在没有环情况下,如果只有一个出度为零的点,就有一头最受欢迎的牛,否则一头都没有

再来看第二种情况

第二种情况:存在环

还是来画张图

这里最受欢迎的是2,3,4

结论:有环时,先把每一个环合并成一个点,在按照没有环的方案去找,最后最受欢迎的就是那个点合并前的所有点

#include<bits/stdc++.h>
using namespace std;
const int N=1e4+5;
vector<int>a[N];
int dfn[N],vis[N],id[N],size[N],low[N],cd[N];//dfn代表当前点的时间戳,low是追溯值,代表当前点可以访问到的最小的时间戳
int n,m;
int times;
int scc;
stack<int>t;
void tarjan(int x){
	vis[x]=1;
	dfn[x]=low[x]=++times;
	t.push(x);
	for(int i=0;i<a[x].size();i++){
		int v=a[x][i];
		if(dfn[v]==0){
			tarjan(v);
			low[x]=min(low[x],low[v]);//如果没被访问,就比较深搜后的low数组与现在
		}
		else if(vis[v]==1){
			low[x]=min(low[x],dfn[v]);//如果访问过了,就在更新一遍与现在的值
		}
	}
	if(low[x]==dfn[x]){
		scc++;
		int v;
		do{
			v=t.top();
			t.pop();
			vis[v]=0;
			id[v]=scc;
			size[scc]++;
		}while(x!=v);
	}
}
main(){
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++){
		int u,v;
		scanf("%d%d",&u,&v);
		a[u].push_back(v);
	}
	for(int i=1;i<=n;i++){
		if(dfn[i]==0)tarjan(i);
	}
	for(int x=1;x<=n;x++){
		for(int i=0;i<a[x].size();i++){
			int v=a[x][i];
			int u1=id[x];
			int u2=id[v];
			if(u1!=u2){
				cd[u1]++;
			}
		}
	}
	int cnt=0,ans=0;
	for(int i=1;i<=scc;i++){
		if(cd[i]==0){
			ans+=size[i];
			cnt++;
			if(cnt>1){
				printf("0");
				return 0;
			}
		}
	}
	printf("%d",ans);
}

# P2341 [USACO03FALL / HAOI2006] 受欢迎 G ## 题目背景 本题测试数据已修复。 ## 题目描述 每头奶都梦想成为棚里的明星。被所有奶喜欢的奶就是一头明星奶。所有奶都是自恋狂,每头奶总是喜欢自己的。奶之间的“喜欢”是可以传递的——如果 $A$ 喜欢 $B$,$B$ 喜欢 $C$,那么 $A$ 也喜欢 $C$。栏里共有 $N$ 头奶,给定一些奶之间的爱慕关系,请你算出有多少头奶可以当明星。 ## 输入格式 第一行:两个用空格分开的整数:$N$ 和 $M$。 接下来 $M$ 行:每行两个用空格分开的整数:$A$ 和 $B$,表示 $A$ 喜欢 $B$。 ## 输出格式 一行单独一个整数,表示明星奶的数量。 ## 输入输出样例 #1 ### 输入 #1 ``` 3 3 1 2 2 1 2 3 ``` ### 输出 #1 ``` 1 ``` ## 说明/提示 只有 $3$ 号奶可以做明星。 【数据范围】 对于 $10\%$ 的数据,$N\le20$,$M\le50$。 对于 $30\%$ 的数据,$N\le10^3$,$M\le2\times 10^4$。 对于 $70\%$ 的数据,$N\le5\times 10^3$,$M\le5\times 10^4$。 对于 $100\%$ 的数据,$1\le N\le10^4$,$1\le M\le5\times 10^4$。 c++,不要vector,变量名小写5字符以内,需要函数:void Tarjan(int u) { dfn[u] = low[u] = ++num; //初始化结点u的dfn和low值 st[++top] = u; //将结点u压入栈中 vis[u] = 1; //标记u在栈中 for (int i = head[u]; i; i = e[i].nxt) { //枚举u的所有出边 int v = e[i].to; if (!dfn[v]) { //结点v未被访问过,说明是树枝边 Tarjan(v); low[u] = min(low[u], low[v]); } else if (vis[v]) //v在栈中,是返祖边 low[u] = min(low[u], dfn[v]); // } int tmp = 0; if (low[u] == dfn[u]) { //结点u是该强连通分量的根 ++cnt; //强连通分量数量加一 do { //将当前结点前所有还在栈空间内的结点都归为当前强连通分量 tmp = st[top--]; vis[tmp] = 0; color[tmp] = cnt; //将同一个强连通分量内的点均标记为相同编号,也可理解为染色 } while(tmp != u); } } set<pair<int, int> > mark;//记录是否连接过 void solution() { //通过tarjan算法将所有强连通分量分配编号 for (int i = 1; i <= n; i++) if (!dfn[i]) Tarjan(i); //遍历所有连边,判断相邻两个结点是否所属同一强连通分量 for (int u = 1, v; u <= n; u++) { for (int i = head[u]; i; i = e[i].nxt) { v = e[j].to; //当相邻两个结点不属于同一强连通分量,则以强连通分量编号为点建边 if (color[u] != color[v] && mark[{color[u], color[v]}].find != mark.end()) { link(color[u], color[v]); mark.insert({color[u], color[v]}); } } } }
08-10
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值