数据处理:应用Savitzky-Golay算法对数据进行平滑化处理

本文介绍了Savitzky-Golay滤波拟合法和非对称高斯函数拟合法在处理NDVI时间序列数据中的应用。Savitzky-Golay滤波通过多项式拟合实现数据平滑,适用于离散数据点的噪声降低。非对称高斯函数拟合则通过分段高斯函数组合模拟植被生长规律,重建时间序列。这两种方法均可用于数据预处理,提高后续分析的准确性。

概念

照抄百度百科,相关推导wiki可见https://en.wikipedia.org/wiki/Savitzky%E2%80%93Golay_filter英语wiki,部分用户可能不可见,原因大家都懂
Savitzky-Golay滤波拟合法是根据NDVI时间序列曲线的平均趋势,确定合适的滤波参数,用多项式实现滑动窗内的最小二乘拟合;利用Savitzky-Golay滤波方法(基于最小二乘的卷积拟合算法)进行迭代运算,模拟整个NDVI时序数据获得长期变化趋势。
非对称高斯函数拟合法是使用分段高斯函数(曲线)组合来模拟植被季相生长(物候)规律、一个组合代表一次植被盛衰过程,最后通过平滑连接各高斯拟合曲线,实现时间序列重建。具体过程包括:区间提取(在时间维选择一最大值或最小值区间作为局部拟合区间)、局部拟合(使用高斯拟合函数对局部区间数据进行拟合)、整体连接(将局部拟合结果合并)。
在这里插入图片描述

使用

这个算法可以对我们比较离散的点做平滑化处理
可用于数据预处理等,可以降低背景噪声,比如在使用SVM前做一下
scipy中的signal子模块能实现这样的功能

import scipy
scipy.signal.savgol_filter(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值