Easy Summation
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 675 Accepted Submission(s): 286
Problem Description
You are encountered with a traditional problem concerning the sums of powers.
Given two integers n and k. Let f(i)=i^k, please evaluate the sum f(1)+f(2)+…+f(n). The problem is simple as it looks, apart from the value of n in this question is quite large.
Can you figure the answer out? Since the answer may be too large, please output the answer modulo 109+7.
Input
The first line of the input contains an integer T(1≤T≤20), denoting the number of test cases.
Each of the following T lines contains two integers n(1≤n≤10000) and k(0≤k≤5).
Output
For each test case, print a single line containing an integer modulo 109+7.
Sample Input
3
2 5
4 2
4 1
Sample Output
33
30
10
Source
2017中国大学生程序设计竞赛 - 女生专场
分析:
直接预处理出所有的值,然后进行取值就可以了
AC代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn = 10010;
const long long M = 1e9 + 7;
long long a[maxn][8];
void init()
{
for(int i=1;i<=10000;i++)
{
a[i][0] = 1;
for(int k=1;k<=5;k++)
{
a[i][k] = (a[i][k-1] * i) % M;
}
}
}
int main()
{
init();
int t,n,k;
scanf("%d",&t);
while(t--)
{
long long ans = 0;
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
{
ans = (ans + a[i][k]) % M;
}
printf("%I64d\n",ans);
}
return 0;
}