然后我们分析一下nand flash的读写等函数。
既然是命令那自然要看到U_BOOT_CMD宏,这个宏分析的很多就不分析了。在cmd_nand.c文件中。nand的命令执行函数是do_nand。当然我们没有定义CFG_NAND_LEGACY,要看这个分支。do_nand函数也没有什么好分析的,摘取几个命令的处理分析下。
1。nand bad命令
列出函数调用次序先,
do_nand
nand_block_isbad//include/nand.h
nand_block_isbad//在Nand_base.c中, info->block_isbad函数指针指向
nand_block_checkbad//在Nand_base.c
nand_block_bad() //在Nand_base.c中,nand_chip,this->block_bad函数指针指向,
nand_isbad_bbt//在Nand_bbt.c中
如下。
点击(此处)折叠或打开
- nand = &nand_info[nand_curr_device];
- if (strcmp(cmd, "bad") == 0) {
- printf("\nDevice %d bad blocks:\n", nand_curr_device);
- for (off = 0; off < nand->size; off += nand->erasesize) //按块循环
- if (nand_block_isbad(nand, off)) //(1)
- printf(" %08x\n", off);
- return 0;
- }
这个函数的定义在include/nand.h中,它调用nand_info[]变量中的block_isbad函数指针指向的函数;这个指针在初始化时已经被分配,这里是Nand_base.c文件中的nand_block_isbad函数。这里有个小问题,那有两个都被编译的nand_block_isbad函数的定义,那到底调用的是哪个呢。答案是nand.h中的,因为Nand_base.c中的是被定义成static的函数,只能在本文件中使用。
点击(此处)折叠或打开
- static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
- {
- /* Check for invalid offset */
- if (ofs > mtd->size)
- return -EINVAL;
- return nand_block_checkbad (mtd, ofs, 1, 0);
- }
这个函数又会调用nand_block_checkbad 函数
点击(此处)折叠或打开
- static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
- {
- struct nand_chip *this = mtd->priv;
- if (!this->bbt) //如果nand_chip结构体变量中的bbt(坏块标记表)表指针是空的
- return this->block_bad(mtd, ofs, getchip);
- /* Return info from the table */
- return nand_isbad_bbt (mtd, ofs, allowbbt);
- }
block_bad函数指针被指向nand_block_bad,分析它,
此函数将从芯片读取坏块标记
点击(此处)折叠或打开
- static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
- {
- int page, chipnr, res = 0;
- struct nand_chip *this = mtd->priv;
- u16 bad;
- page = (int)(ofs >> this->page_shift) & this->pagemask; //(1)
- if (getchip) { //选中芯片
- chipnr = (int)(ofs >> this->chip_shift);
- /* Grab the lock and see if the device is available */
- nand_get_device (this, mtd, FL_READING);
- /* Select the NAND device */
- this->select_chip(mtd, chipnr);
- }
- if (this->options & NAND_BUSWIDTH_16) {
- this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page);
- bad = cpu_to_le16(this->read_word(mtd));
- if (this->badblockpos & 0x1)
- bad >>= 1;
- if ((bad & 0xFF) != 0xff)
- res = 1;
- } else {
- this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page); //(2)
- if (this->read_byte(mtd) != 0xff) //(3)
- res = 1;
- }
- if (getchip) {
- /* Deselect and wake up anyone waiting on the device */
- nand_release_device(mtd);
- }
- return res;
- }
(1)从偏移地址获取页号。page_shift是page页位数(就是一页的大小的数值用二进制表示最高位的序号)。将偏移地址右移页位数,则低位就是页的号码,有相当于除页大小。然后在与上pagemask,就是页大小(主要是将高位置0,其实这里与不与感觉都无所谓,高位本来就是0)
(2)主要就是这一句,cmdfunc()函数,发送读取oob区命令。this->badblockpos在nand_scan函数中设置了大页0,小页5。
(3)读出的位是否是0xff,如果不是就是坏块。
...................................
再看下如果有bbt表,nand_block_checkbad函数将调用nand_isbad_bbt。bbt表在初始化时scan_bbt函数已经建立。所以nand bad命令在这个uboot中都是通过查bbt表完成的。
点击(此处)折叠或打开
- int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt)
- {
- struct nand_chip *this = mtd->priv;
- int block;
- uint8_t res;
- /* Get block number * 2 */
- block = (int) (offs >> (this->bbt_erase_shift - 1)); //(1)
- res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03; //(2)
- DEBUG (MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n",
- (unsigned int)offs, res, block >> 1);
- switch ((int)res) {
- case 0x00: return 0;
- case 0x01: return 1;
- case 0x02: return allowbbt ? 0 : 1;
- }
- return 1;
- }
nand bad命令处理暂时分析到这里
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
分析nand read 命令:
nand read命令的调用顺序为:
do_nand //cmd_nand.c
nand_read_opts///driver/mtd/nand/nand_util.c
nand_read //nand_base.c ,meminfo->read指针指向
nand_read_ecc //nand_base.c
sep4020_nand_read_buf//cpu/sep4020/nand_flash.c
这里的代码大多照搬了内核的mtd层代码,而仅仅对于uboot不需要这么复杂,一些操作觉得不合理,有很多无用又费周折的操作。
do_nand函数中read相关部分:
点击(此处)折叠或打开
- if (strncmp(cmd, "read", 4) == 0 || strncmp(cmd, "write", 5) == 0) {
- int read;
- if (argc < 4)
- goto usage;
- addr = (ulong)simple_strtoul(argv[2], NULL, 16);
- read = strncmp(cmd, "read", 4) == 0; /* 1 = read, 0 = write */
- printf("\nNAND %s: ", read ? "read" : "write");
- if (arg_off_size(argc - 3, argv + 3, nand, &off, &size) != 0)
- return 1;
- s = strchr(cmd, '.');
- if (s != NULL &&
- (!strcmp(s, ".jffs2") || !strcmp(s, ".e") || !strcmp(s, ".i"))) {
- if (read) {
- /* read */
- nand_read_options_t opts;
- memset(&opts, 0, sizeof(opts));
- opts.buffer = (u_char*) addr; //addr是内存地址,nand读出来的数据最终将存入这里
- opts.length = size; //读取的大小
- opts.offset = off; //flash地址
- opts.quiet = quiet;
- ret = nand_read_opts(nand, &opts); //读数据操作,opts将保存必要的信息。
- } else {
- /* write */
- nand_write_options_t opts;
- memset(&opts, 0, sizeof(opts));
- opts.buffer = (u_char*) addr;
- opts.length = size;
- opts.offset = off;
- /* opts.forcejffs2 = 1; */
- opts.pad = 1;
- opts.blockalign = 1;
- opts.quiet = quiet;
- ret = nand_write_opts(nand, &opts);
- }
- } else if (s != NULL && !strcmp(s, ".yaffs")) {
- if (read) {
- /* read */
- nand_read_options_t opts;
- memset(&opts, 0, sizeof(opts));
- opts.buffer = (u_char*) addr;
- opts.length = size;
- opts.offset = off;
- opts.quiet = quiet;
- ret = nand_read_opts(nand, &opts);
- } else {
- /* write */
- nand_write_options_t opts;
- memset(&opts, 0, sizeof(opts));
- opts.buffer = (u_char*) addr;
- opts.length = size;
- opts.offset = off;
- /* opts.forceyaffs = 1; */
- opts.noecc = 1;
- opts.writeoob = 1;
- opts.blockalign = 1;
- opts.quiet = quiet;
- opts.skipfirstblk = 1;
- ret = nand_write_opts(nand, &opts);
- }
- } else if (s != NULL && !strcmp(s, ".oob")) {
- /* read out-of-band data */
- if (read)
- ret = nand->read_oob(nand, off, size, &size,
- (u_char *) addr);
- else
- ret = nand->write_oob(nand, off, size, &size,
- (u_char *) addr);
- } else {
- if (read)
- ret = nand_read(nand, off, &size, (u_char *)addr);
- else
- ret = nand_write(nand, off, &size, (u_char *)addr);
- }
- printf(" %d bytes %s: %s\n", size,
- read ? "read" : "written", ret ? "ERROR" : "OK");
- return ret == 0 ? 0 : 1;
- }
nand_read_opts在/driver/mtd/nand/nand_util.c,参照代码中原本的英文注释,代码量大也就不做详细分析了
点击(此处)折叠或打开
- /**
- * nand_read_opts: - read image from NAND flash with support for various options
- *
- * @param meminfo NAND device to erase
- * @param opts read options (@see struct nand_read_options)
- * @return 0 in case of success
- *
- */
- int nand_read_opts(nand_info_t *meminfo, const nand_read_options_t *opts)
- {
- int imglen = opts->length;
- int pagelen;
- int baderaseblock;
- int blockstart = -1;
- int percent_complete = -1;
- loff_t offs;
- size_t readlen;
- ulong mtdoffset = opts->offset;
- u_char *buffer = opts->buffer;
- int result;
- /* make sure device page sizes are valid */
- if (!(meminfo->oobsize == 16 && meminfo->oobblock == 512)
- && !(meminfo->oobsize == 8 && meminfo->oobblock == 256)
- && !(meminfo->oobsize == 64 && meminfo->oobblock == 2048)) {
- printf("Unknown flash (not normal NAND)\n");
- return -1;
- }
- pagelen = meminfo->oobblock
- + ((opts->readoob != 0) ? meminfo->oobsize : 0);
- /* check, if length is not larger
than device */
- if (((imglen / pagelen) * meminfo->oobblock)
- > (meminfo->size - opts->offset)) {
- printf("Image %d bytes, NAND page %d bytes, "
- "OOB area %u bytes, device size %u bytes\n",
- imglen, pagelen, meminfo->oobblock, meminfo->size);
- printf("Input block is larger than device\n");
- return -1;
- }
- if (!opts->quiet)
- printf("\n");
- /* get data from input and write to the device */
- while (imglen && (mtdoffset < meminfo->size)) {
- WATCHDOG_RESET ();
- /*
- * new eraseblock, check for bad block(s). Stay in the
- * loop to be sure if the offset changes because of
- * a bad block, that the next block that will be
- * written to is also checked. Thus avoiding errors if
- * the block(s) after the skipped block(s) is also
bad
- * (number of blocks depending on the blockalign
- */
- while (blockstart != (mtdoffset & (~meminfo->erasesize+1))) {
- blockstart = mtdoffset & (~meminfo->erasesize+1);
- offs = blockstart;
- baderaseblock = 0;
- /* check all the blocks in an erase block for
- * bad blocks */
- do {
- int ret = meminfo->block_isbad(meminfo, offs);
- if (ret < 0) {
- printf("Bad block check failed\n");
- return -1;
- }
- if (ret == 1) {
- baderaseblock = 1;
- if (!opts->quiet)
- printf("\rBad block at 0x%lx "
- "in erase block from "
- "0x%x will be skipped\n",
- (long) offs,
- blockstart);
- }
- if (baderaseblock) {
- mtdoffset = blockstart
- + meminfo->erasesize;
- }
- offs += meminfo->erasesize;
- } while (offs < blockstart + meminfo->erasesize);
- }
- /* read page data to memory buffer */
- result = meminfo->read(meminfo, //读2048字节(不包含oob的一页),
- mtdoffset, //nand flash地址
- meminfo->oobblock, //页大小(2048),即需要读取的字节数
- &readlen,
- (unsigned char *) &data_buf);
- if (result != 0) {
- printf("reading NAND page at offset 0x%lx failed\n",
- mtdoffset);
- return -1;
- }
- if (imglen < readlen) {
- readlen = imglen;
- }
- memcpy(buffer, data_buf, readlen);
- buffer += readlen;
- imglen -= readlen;
- //上面是读页有效数据(2048),这里读oob数据。
- if (opts->readoob) {
- result = meminfo->read_oob(meminfo,
- mtdoffset,
- meminfo->oobsize,
- &readlen,
- (unsigned char *)
- &oob_buf);
- if (result != 0) {
- printf("\nMTD readoob failure: %d\n",
- result);
- return -1;
- }
- if (imglen < readlen) {
- readlen = imglen;
- }
- memcpy(buffer, oob_buf, readlen);
- buffer += readlen;
- imglen -= readlen;
- }
- if (!opts->quiet) {
- unsigned long long n = (unsigned long long)
- (opts->length-imglen) * 100;
- int percent;
- do_div(n, opts->length);
- percent = (int)n;
- /* output progress message only at whole percent
- * steps to reduce the number of messages printed
- * on (slow) serial consoles
- */
- if (percent != percent_complete) {
- if (!opts->quiet)
- printf("\rReading data from 0x%x "
- "-- %3d%% complete.",
- mtdoffset, percent);
- percent_complete = percent;
- }
- }
- mtdoffset += meminfo->oobblock;
- }
- if (!opts->quiet)
- printf("\n");
- if (imglen > 0) {
- printf("Could not read entire image due to bad blocks\n");
- return -1;
- }
- /* return happy */
- return 0;
- }
上面meminfo->read指向的函数是,nand_read在nand_base.c文件中。
点击(此处)折叠或打开
- static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
- {
- return nand_read_ecc (mtd, from, len, retlen, buf, NULL, NULL);
- }
nand_read_ecc函数在nand_base.c中,函数如下
点击(此处)折叠或打开
- /**
- * nand_read_ecc - [MTD Interface] Read data with ECC
- * @mtd: MTD device structure
- * @from: offset to read from
- * @len: number of bytes to read
- * @retlen: pointer to variable to store the number of read bytes
- * @buf: the databuffer to put data
- * @oob_buf: filesystem supplied oob data buffer
- * @oobsel: oob selection structure
- *
- * NAND read with ECC
- */
- static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
- size_t * retlen, u_char * buf, u_char * oob_buf, struct
nand_oobinfo *oobsel)
- {
- int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
- int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
- struct nand_chip *this = mtd->priv;
- u_char *data_poi, *oob_data = oob_buf;
- u_char ecc_calc[32];
- u_char ecc_code[32];
- int eccmode, eccsteps;
- unsigned *oob_config;
- int datidx;
- int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
- int eccbytes;
- int compareecc = 1;
- int oobreadlen;
- DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
- /* Do not allow reads past end of device */
- if ((from + len) > mtd->size) {
- DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
- *retlen = 0;
- return -EINVAL;
- }
- /* Grab the lock and see if the device is available */
- nand_get_device (this, mtd ,FL_READING);
- /* use userspace supplied oobinfo, if zero */
- if (oobsel == NULL)
- oobsel = &mtd->oobinfo;
- /* Autoplace of oob data ? Use the default placement scheme */
- if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
- oobsel = this->autooob;
- eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
- oob_config = oobsel->eccpos;
- /* Select the NAND device */
- chipnr = (int)(from >> this->chip_shift);
- this->select_chip(mtd, chipnr);
- /* First we calculate the starting page */
- realpage = (int) (from >> this->page_shift);
- page = realpage & this->pagemask;
- /* Get raw starting column */
- col = from & (mtd->oobblock - 1);
- end = mtd->oobblock;
- ecc = this->eccsize;
- eccbytes = this->eccbytes;
- if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
- compareecc = 0;
- oobreadlen = mtd->oobsize;
- if (this->options & NAND_HWECC_SYNDROME)
- oobreadlen -= oobsel->eccbytes;
- /* Loop until all data read */
- while (read < len) {
- int aligned = (!col && (len - read) >= end);
- /*
- * If the read is not page aligned, we have to read
into data buffer
- * due to ecc, else we read into return buffer direct
- */
- if (aligned)
- data_poi = &buf[read];
- else
- data_poi = this->data_buf;
- /* Check, if we have this page in the buffer
- *
- * FIXME: Make it work when we must provide oob data too,
- * check the usage of data_buf oob field
- */
- if (realpage == this->pagebuf && !oob_buf) {
- /* aligned read ? */
- if (aligned)
- memcpy (data_poi, this->data_buf, end);
- goto readdata;
- }
- /* Check, if we must send the read command */
- if (sndcmd) {
//板级读命令发送,其实这里主要设置了nandflash的地址。
- this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
- sndcmd = 0;
- }
- /* get oob area, if we have no oob buffer from fs-driver */
- if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE ||
- oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
- oob_data = &this->data_buf[end];
- eccsteps = this->eccsteps;
- switch (eccmode) {
- case NAND_ECC_NONE: { /* No ECC, Read in a
page */
- /* XXX U-BOOT XXX */
- #if 0
- static unsigned long lastwhinge = 0;
- if ((lastwhinge / HZ) != (jiffies / HZ)) {
- printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
- lastwhinge = jiffies;
- }
- #else
- puts("Reading data from NAND FLASH without ECC is not recommended\n");
- #endif
- this->read_buf(mtd, data_poi, end);
- break;
- }
- case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a
page + oob data */
- this->read_buf(mtd, data_poi, end); //读取数据
- for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc)
- this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
- break;
- default:
- for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
- this->enable_hwecc(mtd, NAND_ECC_READ);
- this->read_buf(mtd, &data_poi[datidx], ecc);
- /* HW ecc with syndrome calculation must read the
- * syndrome from flash immidiately after the data */
- if (!compareecc) {
- /* Some hw ecc generators need to know when the
- * syndrome is read from flash */
- this->enable_hwecc(mtd, NAND_ECC_READSYN);
- this->read_buf(mtd, &oob_data[i], eccbytes);
- /* We calc error correction directly, it checks the hw
- * generator for an error, reads back the syndrome and
- * does the error correction on the fly */
- if (this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]) == -1) {
- DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: "
- "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
- ecc_failed++;
- }
- } else {
- this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
- }
- }
- break;
- }
- /* read oobdata */
- this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
- /* Skip ECC check, if not requested (ECC_NONE or HW_ECC
with syndromes) */
- if (!compareecc)
- goto readoob;
- /* Pick the ECC bytes out of the oob data */
- for (j = 0; j < oobsel->eccbytes; j++)
- ecc_code[j] = oob_data[oob_config[j]];
- /* correct data, if neccecary */
- for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
- ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
- /* Get next chunk of ecc bytes */
- j += eccbytes;
- /* Check, if we have a fs supplied oob-buffer,
- * This is the legacy mode. Used by YAFFS1
- * Should go away some day
- */
- if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) {
- int *p = (int *)(&oob_data[mtd->oobsize]);
- p[i] = ecc_status;
- }
- if (ecc_status == -1) {
- DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
- ecc_failed++;
- }
- }
- readoob:
- /* check, if we have a fs supplied oob-buffer */
- if (oob_buf) {
- /* without autoplace. Legacy mode used by YAFFS1 */
- switch(oobsel->useecc) {
- case MTD_NANDECC_AUTOPLACE:
- case MTD_NANDECC_AUTOPL_USR:
- /* Walk through the autoplace chunks */
- for (i = 0, j = 0; j < mtd->oobavail; i++) {
- int from = oobsel->oobfree[i][0];
- int num = oobsel->oobfree[i][1];
- memcpy(&oob_buf[oob+j], &oob_data[from], num);
- j+= num;
- }
- oob += mtd->oobavail;
- break;
- case MTD_NANDECC_PLACE:
- /* YAFFS1 legacy mode */
- oob_data += this->eccsteps * sizeof (int);
- default:
- oob_data += mtd->oobsize;
- }
- }
- readdata:
- /* Partial page read, transfer data into fs buffer */
- if (!aligned) {
- for (j = col; j < end && read < len; j++)
- buf[read++] = data_poi[j];
- this->pagebuf = realpage;
- } else
- read += mtd->oobblock;
- /* Apply delay or wait for ready/busy pin
- * Do this before the AUTOINCR check, so no problems
- * arise if a chip which does auto increment
- * is marked as NOAUTOINCR by the board driver.
- */
- if (!this->dev_ready)
- udelay (this->chip_delay);
- else
- while (!this->dev_ready(mtd));
- if (read == len)
- break;
- /* For subsequent reads align to page boundary. */
- col = 0;
- /* Increment page address */
- realpage++;
- page = realpage & this->pagemask;
- /* Check, if we cross a chip boundary */
- if (!page) {
- chipnr++;
- this->select_chip(mtd, -1);
- this->select_chip(mtd, chipnr);
- }
- /* Check, if the chip supports auto page increment
- * or if we have hit a block boundary.
- */
- if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
- sndcmd = 1;
- }
- /* Deselect and wake up anyone waiting on the device */
- nand_release_device(mtd);
- /*
- * Return success, if no ECC failures, else -EBADMSG
- * fs driver will take care of that, because
- * retlen == desired len and result == -EBADMSG
- */
- *retlen = read;
- return ecc_failed ? -EBADMSG : 0;
- }
this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page)函数指针指向的函数为sep4020_nand_command函数
点击(此处)折叠或打开
- static void sep4020_nand_command (struct mtd_info *mtd, unsigned command, int column, intpage_addr)
- {
- register struct nand_chip *this = mtd->priv;
- if(command == NAND_CMD_READOOB) //(1)
- {
- column += mtd->oobblock;
- command = NAND_CMD_READ0;
- }
- //column是坏块在oob中的位置,加上oobblock(就是页大小pagesiz,不知道为什么起这个名字oobblock),这样就是
- //地址中的列地址。command命令赋值NAND_CMD_READ0(0),读命令。
- this->hwcontrol(mtd, NAND_CTL_SETCLE);
- //命令引脚使能
- switch(command)
- {
- case NAND_CMD_READ0:
- *(volatile unsigned long*)EMI_NAND_COM_RAW = 0x40003000;
- //这个寄存器[7:0]命令的第一个字节00 [15:8]是命令的第二个字节30 .
- //最高位是使能位(暂不开启),30位是字节表示1字节还是2字节命令。4=0100
- break;
- case NAND_CMD_SEQIN:
- *(volatile unsigned long*)EMI_NAND_COM_RAW = 0x40001080;
- // 80,10 写flash
- break;
- default:
- this->write_byte(mtd,command);
- break;
- }
- this->hwcontrol(mtd,NAND_CTL_CLRCLE);
- //命令引脚无效
- if (command == NAND_CMD_READID)
- {
- EMI_NAND_COM |= 0x80000000; //使能EMI_NAND_COM
- this->hwcontrol(mtd, NAND_READ_ID);
- return;
- }
- if (command == NAND_CMD_STATUS)
- {
- EMI_NAND_COM |= 0x80000000; //使能EMI_NAND_COM
- this->hwcontrol(mtd, NAND_READ_STATUS);
- }
- if (command == NAND_CMD_RESET)
- {
- EMI_NAND_COM |= 0x80000000;
- this->hwcontrol(mtd, NAND_CTL_CLRALE);
- }
- /* Set ALE and clear CLE to start address cycle */
- if (column != -1 || page_addr != -1) {
- this->hwcontrol(mtd, NAND_CTL_SETALE); //这里这个函数其实没什么用。
- EMI_NAND_ADDR1 = page_addr<<16; //page_addr是页号。128M,2Kflash一共就64K页
- EMI_NAND_ADDR2 = page_addr>>16; //对于一共总数64K的页,这个值等于0
- this->hwcontrol(mtd, NAND_CTL_CLRALE);
- }
- //
- }
分析sep4020_hwcontrol函数。此函数之所以存在,应该是为了和MCU通过引脚直接控制或其他MCU的nand flash的代码结构保持兼容,此处此函数的主要作用是将IO_ADDR_W替换成对应的寄存器地址
点击(此处)折叠或打开
- static void sep4020_hwcontrol(struct mtd_info *mtd, int cmd)
- {
- struct nand_chip *this = mtd->priv;
- switch (cmd) {
- case NAND_CTL_SETNCE:
- case NAND_CTL_CLRNCE:
- break;
- //对于nCE位的操作都不予理睬
- case NAND_CTL_SETCLE:
- this->IO_ADDR_W = (void __iomem *) EMI_NAND_COM_RAW;
- break;
- //IO_ADDR_W是nand flash的数据寄存器地址。是_iomem类型变量(这是个空的宏定义,
- //但这样可以让人很容易知道这是个寄存器变量。),这里的作用是将EMI_NAND_COM_RAW即nand flash
- //内存的地址赋值给IO_ADDR_W,这样后面的操作,在使用IO_ADDR_W时就是使用EMI_NAND_COM_RAW。
- case NAND_CTL_SETALE:
- this->IO_ADDR_W = (void __iomem *) EMI_NAND_ADDR1_RAW;
- break;
- case NAND_READ_ID:
- this->IO_ADDR_R = (void __iomem *) EMI_NAND_ID_RAW;
- break;
- case NAND_READ_STATUS:
- this->IO_ADDR_R = (void __iomem *) EMI_NAND_STA_RAW;
- break;
- /* NAND_CTL_CLRCLE: */
- /* NAND_CTL_CLRALE: */
- default:
- this->IO_ADDR_W = (void __iomem *) EMI_NAND_DATA_RAW;
- this->IO_ADDR_R = (void __iomem *) EMI_NAND_DATA_RAW;
- //在一些命令使能和地址使能后,将IO_ADDR_W还原成EMI_NAND_DATA_RAW nand flash数据寄存器地址
- break;
- }
- }
this->read_buf(mtd, data_poi, end);read_buf指向的函数为sep4020_nand_read_buf,
点击(此处)折叠或打开
- static void sep4020_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
- {
- int i;
- struct nand_chip *this = mtd->priv;
- //配置DMAC用于nand的传输
- DMAC_C0CONTROL = ((2112>>2)<<14) + (1<<13) + (2<<9) +(2<<6) + (3<<3) + 3;
- DMAC_C0SRCADDR = EMI_NAND_DATA_RAW ;
- DMAC_C0DESTADD = vaddr; //vaddr在board_nand_init函数中,使用malloc分配的一块2112大的内存空间
- DMAC_C0CONFIGURATION = 0x31d ;
- EMI_NAND_COM = 0xc0003000; //nand命令控制器,00 30读命令,且最高位使能nand控制器,开始读数据。
- while(1)
- {
- if ((EMI_NAND_IDLE & 0x01) != 0)
- break;
- }
- if(len == 2048 || len == 2112) //如果要读取的长度是1页或包含oob的1页。则从vaddr开始复制len长度的数据
- {
- memcpy(buf,vaddr,len);
- }
- else if(len == 64) //如果读取的长度是64,则是要只读取oob区域,则从vaddr+2048地址处开始复制。
- {
- memcpy(buf,vaddr+2048,len);
- }
- }
nand read命令大致就是这样一个流程。本来想只是写写uboot关于nand的处理,和这个sep4020 nand控制器的特点。没想到这个版本的uboot就是nand驱动和内核的差不多,代码量太多。可能也是自己不熟悉这块,陆陆续续写了几天,感觉写的效率很低,写的想吐。于是草草结尾。之后看看其他版本的uboot的nand相关,不知道还是不是这样了。
本文详细解析了U-Boot环境下NAND Flash的读操作过程,包括nandbad命令的实现流程,以及nandread命令的具体执行步骤。深入分析了命令处理函数、读取函数和硬件控制函数的工作原理。
641

被折叠的 条评论
为什么被折叠?



