Period
| Time Limit: 3000MS | Memory Limit: 30000K | |
| Total Submissions: 16822 | Accepted: 8095 |
Description
For each prefix of a given string S with N characters (each character has an ASCII code between 97 and 126, inclusive), we want to know whether the prefix is a periodic string. That is, for each i (2 <= i <= N) we want to know the largest K > 1 (if there is
one) such that the prefix of S with length i can be written as AK ,that is A concatenated K times, for some string A. Of course, we also want to know the period K.
Input
The input consists of several test cases. Each test case consists of two lines. The first one contains N (2 <= N <= 1 000 000) – the size of the string S.The second line contains the string S. The input file ends with a line, having the
number zero on it.
number zero on it.
Output
For each test case, output "Test case #" and the consecutive test case number on a single line; then, for each prefix with length i that has a period K > 1, output the prefix size i and the period K separated by a single space; the prefix sizes must be in increasing
order. Print a blank line after each test case.
Sample Input
3 aaa 12 aabaabaabaab 0
Sample Output
Test case #1 2 2 3 3 Test case #2 2 2 6 2 9 3 12 4
#include<stdio.h>
#include<string.h>
#define maxn 1000100
int next[maxn];
char s[maxn];
void get_next(char *s)
{
int len1=strlen(s);
int i=0,j=-1;
next[0]=-1;
while(i<len1)
{
if(j==-1||s[i]==s[j])
{
next[++i]=++j;
}
else j=next[j];
}
}
int main()
{
int n,i,j;
int cnt=0;
while(~scanf("%d",&n)&&n)
{
scanf("%s",s);
get_next(s);
printf("Test case #%d\n",++cnt);
for(i=1;i<=n;i++)
{
int len=i-next[i];
if(i!=len&&i%len==0)
{
printf("%d %d\n",i,i/len);
}
}
printf("\n");
}
return 0;
}
本文介绍了一种用于检测字符串前缀是否具有周期性的算法。该算法通过构建字符串的next数组来高效判断每个前缀是否可以表示为某个字符串的多次重复,并输出所有具有周期性的前缀及其周期。
1193

被折叠的 条评论
为什么被折叠?



