Random Teams------贪心

本文探讨了将n个参与者分成m个团队后,团队内部可能形成的好友关系对数的最大值与最小值。通过算法分析,确定了当团队人数分布不均时形成最多好友对,而平均分配时形成最少好友对的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

n participants of the competition were split into m teams in some manner so that each team has at least one participant. After the competition each pair of participants from the same team became friends.

Your task is to write a program that will find the minimum and the maximum number of pairs of friends that could have formed by the end of the competition.

Input
The only line of input contains two integers n and m, separated by a single space (1 ≤ m ≤ n ≤ 109) — the number of participants and the number of teams respectively.

Output
The only line of the output should contain two integers kmin and kmax — the minimum possible number of pairs of friends and the maximum possible number of pairs of friends respectively.

Examples
Input
5 1
Output
10 10

Input
3 2
Output
1 1

Input
6 3
Output
3 6

Note
In the first sample all the participants get into one team, so there will be exactly ten pairs of friends.

In the second sample at any possible arrangement one team will always have two participants and the other team will always have one participant. Thus, the number of pairs of friends will always be equal to one.

In the third sample minimum number of newly formed friendships can be achieved if participants were split on teams consisting of 2 people, maximum number can be achieved if participants were split on teams of 1, 1 and 4 people.

题意

n个人分到m个队中,每个队的队友的人都会成为好朋友,问好朋友最多最少分别有多少对

解题思路

一开始也没啥思路,就猜想了几种情况,自己找了几组数据试验了一下,发现把人集中在其中一队,其他队都放一个人这种情况好朋友的对数最多,如果每个队均分的话对数最少
容易出错的点:
注意数据范围为long long
看清楚是先输出max还是先输出min,我就给弄反了…这种蠢错误只有我会犯吧,wa了好几发

代码实现

#include<iostream>
using namespace std;
typedef long long ll;
int main()
{
	long long n, m, max = 0, min = 0;
	cin >> n >> m;
	if (m == 1)//一队的话最大值最小值相等
	{
		max = n * (n - 1) / 2;
		cout << max << " " << max << endl;
		return 0;
	}
	else
	{
		long long t = n - m + 1,x = n / m, y = n % m;
		max = t * (t - 1) / 2;
		min = (m - y) * x*(x-1)/2 + y * x*(x+1)/2;
		cout << min << " " << max << endl;
	}
	return 0;
}

码字不易,留个赞吧
授人一赞,手有余香~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值