设计模式之工厂模式

工厂模式

工厂模式(Factory Pattern)是 Java 中最常用的设计模式之一。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。

在工厂模式中,我们在创建对象时不会对客户端暴露创建逻辑,并且是通过使用一个共同的接口来指向新创建的对象。

使用条件:在不同条件下创建不同的实例。

应用场景:

 1、您需要一辆汽车,可以直接从工厂里面提货,而不用去管这辆汽车是怎么做出来的,以及这个汽车里面的具体实现。

优势:

1.当你想创建一个对象的时候,只需要知道这个对象的名字,而不需要知道创建这个对象的细节。

2.扩展性高,如果想增加一个产品只需要扩展一个工厂类就可以了。

3.调用者只关心产品的接口,而不需要关心具体的实现细节

缺点:

1.每每次增加一个产品时,都需要增加一个具体类和对象实现工厂,系统的复杂度会提高。

使用场景: 

1、日志记录器:记录可能记录到本地硬盘、系统事件、远程服务器等,用户可以选择记录日志到什么地方。

2、数据库访问,当用户不知道最后系统采用哪一类数据库,以及数据库可能有变化时。

3、设计一个连接服务器的框架,需要三个协议,"POP3"、"IMAP"、"HTTP",可以把这三个作为产品类,共同实现一个接口。

实现

我们将创建一个 Shape 接口和实现 Shape 接口的实体类。下一步是定义工厂类 ShapeFactory

FactoryPatternDemo,我们的演示类使用 ShapeFactory 来获取 Shape 对象。它将向 ShapeFactory 传递信息(CIRCLE / RECTANGLE / SQUARE),以便获取它所需对象的类型。

工厂模式的 UML 图

第一步:创建一个接口:Shape.java

public interface Shape {
   void draw();
}

第二步:创建实现接口的实体类

Rectangle.java

public class Rectangle implements Shape {
 
   @Override
   public void draw() {
      System.out.println("Inside Rectangle::draw() method.");
   }
}

Square.java

public class Square implements Shape {
 
   @Override
   public void draw() {
      System.out.println("Inside Square::draw() method.");
   }
}

Circle.java

public class Circle implements Shape {
 
   @Override
   public void draw() {
      System.out.println("Inside Circle::draw() method.");
   }
}

第三步:创建一个工厂,生成基于给定信息的实体类的对象。

ShapeFactory.java

public class ShapeFactory {
    
   //使用 getShape 方法获取形状类型的对象
   public Shape getShape(String shapeType){
      if(shapeType == null){
         return null;
      }        
      if(shapeType.equalsIgnoreCase("CIRCLE")){
         return new Circle();
      } else if(shapeType.equalsIgnoreCase("RECTANGLE")){
         return new Rectangle();
      } else if(shapeType.equalsIgnoreCase("SQUARE")){
         return new Square();
      }
      return null;
   }
}

第四步:使用该工厂,通过传递类型信息来获取实体类的对象。

FactoryPatternDemo.java

public class FactoryPatternDemo {
 
   public static void main(String[] args) {
      ShapeFactory shapeFactory = new ShapeFactory();
 
      //获取 Circle 的对象,并调用它的 draw 方法
      Shape shape1 = shapeFactory.getShape("CIRCLE");
 
      //调用 Circle 的 draw 方法
      shape1.draw();
 
      //获取 Rectangle 的对象,并调用它的 draw 方法
      Shape shape2 = shapeFactory.getShape("RECTANGLE");
 
      //调用 Rectangle 的 draw 方法
      shape2.draw();
 
      //获取 Square 的对象,并调用它的 draw 方法
      Shape shape3 = shapeFactory.getShape("SQUARE");
 
      //调用 Square 的 draw 方法
      shape3.draw();
   }
}

第五步:执行程序,输出结果:

Inside Circle::draw() method.
Inside Rectangle::draw() method.
Inside Square::draw() method.

 

这样就实现了一个工厂模式,可能 有人对Shape shape1 = shapeFactory.getShape("CIRCLE");不是很理解,为什么要把一个实现接口的对象赋值给一个接口变量?实际上是这样的,当把实现某一接口类创建的对象的引用赋给该接口声明的接口变量,那么该 接口变量就可以调用被类实现的接口中的方法。实际上,当接口变量调用被类实现的接口 中的方法时,就是通知相应的对象调用接口方法。这样就不难理解,怎么使用工厂模式,以及工厂模式给我们写代码带来的便利。

Matlab基于粒子群优化算法及鲁棒MPPT控制器提高光伏并网的效率内容概要:本文围绕Matlab在电力系统优化与控制领域的应用展开,重点介绍了基于粒子群优化算法(PSO)和鲁棒MPPT控制器提升光伏并网效率的技术方案。通过Matlab代码实现,结合智能优化算法与先进控制策略,对光伏发电系统的大功率点跟踪进行优化,有效提高了系统在不同光照条件下的能量转换效率和并网稳定性。同时,文档还涵盖了多种电力系统应用场景,如微电网调度、储能配置、鲁棒控制等,展示了Matlab在科研复现与工程仿真中的强大能力。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事新能源系统开发的工程师;尤其适合关注光伏并网技术、智能优化算法应用与MPPT控制策略研究的专业人士。; 使用场景及目标:①利用粒子群算法优化光伏系统MPPT控制器参数,提升动态响应速度与稳态精度;②研究鲁棒控制策略在光伏并网系统中的抗干扰能力;③复现已发表的高水平论文(如EI、SCI)中的仿真案例,支撑科研项目与学术写作。; 阅读建议:建议结合文中提供的Matlab代码与Simulink模型进行实践操作,重点关注算法实现细节与系统参数设置,同时参考链接中的完整资源下载以获取更多复现实例,加深对优化算法与控制系统设计的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值