基于python的图表生成系统,python自动生成图表

大家好,小编来为大家解答以下问题,基于python的图表生成系统,python自动生成图表,今天让我们一起来看看吧!

新年快乐,时间过得真的是很快,已经到了新的一年了,今天小编给大家来介绍一款十分好用的可视化模块,D3Blocks,不仅可以用来绘制可动态交互的图表,并且导出的图表可以是HTML格式,方便在浏览器上面呈现。

15d6c3e1cafa80c98a7a9ecd7063ec19.png

热力图

热力图是一种通过对色块着色来显示数据的统计图表python简单代码案例。绘图时需要指定颜色映射的规则。例如较大的值由较深的颜色表示,而较小的值由较浅的颜色表示等等。热力图适用于查看总体的情况,发现异常值、显示多个变量之间的差异,以及检测它们之间是否存在任何相关性。

我们这里来尝试绘制一张简单的热力图,代码如下

from d3blocks import D3Blocks

# 初始化
d3 = D3Blocks()

# 导入数据集
df = d3.import_example('energy')

# 绘制热力图
d3.heatmap(df, showfig=True, stroke='red', vmax=10, figsize=(700,700))

output

4ec2be119886c46b0c6ccc52038d185b.gif

粒子图

D3Blocks模块当的particles()方法可以方便我们将任何字体转换成带有动态效果的粒子图,跟随着鼠标的移动,图表中的元素也会动态的起伏飞舞,代码如下

# 导入模块
from d3blocks import D3Blocks

# 初始化
d3 = D3Blocks()

# 绘制粒子图
d3.particles('D3Blocks', collision=0.05, spacing=10, figsize=[1200, 500])

output

675ecc1a6fbb8431e90ba06c79f9c99e.gif

时间序列图

时间序列的折线图,又被称为是趋势图,是以时间为横轴,观察变量为纵轴,用来反映时间与数量之间的关系,这里我们调用的是timeseries()方法,代码如下

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值