批量归一化 && 残差网络

本文深入探讨了深度学习中的关键概念和技术,包括批量归一化(Batch Normalization)、残差网络(ResNet)以及稠密连接网络(DenseNet)。详细讲解了批量归一化如何改善深度模型的训练,残差网络如何解决深度学习中的退化问题,以及DenseNet如何通过特征复用提升模型效率。

基于此前对于CNN的介绍

就深层次 CNN 的结构进一步探讨归一化和残差网络。

批量归一化(BatchNormalization)

让网络训练归一化变得更加容易,本质是一种对数据的标准化处理

分类

  • 对输入的标准化(浅层模型)

处理后的任意一个特征在数据集中所有样本上的均值为0、标准差为1。 标准化处理输入数据使各个特征的分布相近

  • 批量归一化(深度模型)随着模型参数的迭代更新,靠近输出层的数据剧烈变化

利用小批量上的均值和标准差,不断调整神经网络中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。

应用

  • 对全连接层做批量归一化

位置:全连接层中的仿射变换和激活函数之间。

全连接:
x = W u + b o u t p u t = ϕ ( x ) \boldsymbol{x} = \boldsymbol{W\boldsymbol{u} + \boldsymbol{b}} \\ output =\phi(\boldsymbol{x}) x=Wu+boutput=ϕ(x)

输入是u,经过仿射变化得到x,经过激活函数得到output,size=(batch_size,输出神经元的个数)

批量归一化:
o u t p u t = ϕ ( BN ( x ) ) output=\phi(\text{BN}(\boldsymbol{x})) output=ϕ(BN(x))

y ( i ) = BN ( x ( i ) ) \boldsymbol{y}^{(i)} = \text{BN}(\boldsymbol{x}^{(i)}) y(i)=BN(x(i))

μ B ← 1 m ∑ i = 1 m x ( i ) , \boldsymbol{\mu}_\mathcal{B} \leftarrow \frac{1}{m}\sum_{i = 1}^{m} \boldsymbol{x}^{(i)}, μBm1i=1mx(i),

σ B 2 ← 1 m ∑ i = 1 m ( x ( i ) − μ B ) 2 , \boldsymbol{\sigma}_\mathcal{B}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m}(\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_\mathcal{B})^2, σB2m1i=1m(x(i)μB)2,

x ^ ( i ) ← x ( i ) − μ B σ B 2 + ϵ , \hat{\boldsymbol{x}}^{(i)} \leftarrow \frac{\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_\mathcal{B}}{\sqrt{\boldsymbol{\sigma}_\mathcal{B}^2 + \epsilon}}, x^(i)σB2+ϵ x(i)

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值