目录
转载于
类的加载机制
1.类的加载
类的加载指的是将类的.class文件中的二进制数据读入到内存中,将其放在运行时数据区的方法区内,然后在堆区创建一个 java.lang.Class
对象,用来封装类在方法区内的数据结构。类的加载的最终产品是位于堆区中的 Class
对象, Class
对象封装了类在方法区内的数据结构,并且向Java程序员提供了访问方法区内的数据结构的接口。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ter0yjkv-1609345895427)(D:\0000note\1基础note\img\内存结构.png)]
类加载器并不需要等到某个类被“首次主动使用”时再加载它,JVM规范允许类加载器在预料某个类将要被使用时就预先加载它,如果在预先加载的过程中遇到了.class文件缺失或存在错误,类加载器必须在程序首次主动使用该类时才报告错误(LinkageError错误)如果这个类一直没有被程序主动使用,那么类加载器就不会报告错误
加载.class文件的方式
- 从本地系统中直接加载
- 通过网络下载.class文件
- 从zip,jar等归档文件中加载.class文件
- 从专有数据库中提取.class文件
- 将Java源文件动态编译为.class文件
2.类的生命周期
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-i3fzt7d0-1609345895435)(D:\0000note\1基础note\img\类的生命周期.png)]
其中类加载的过程包括了加载、验证、准备、解析、初始化五个阶段。
加载、验证、准备和初始化 这四个阶段发生的顺序是确定的,而解析阶段则不一定,它在某些情况下可以在初始化阶段之后开始,这是为了支持Java语言的运行时绑定(也成为动态绑定或晚期绑定)。
另外注意这里的几个阶段是按顺序开始,不是顺序完成,因为这些阶段通常都是互相交叉地混合进行的,通常在一个阶段执行的过程中调用或激活另一个阶段。
加载
在加载阶段,虚拟机需要完成以下三件事情:
- 通过一个类的全限定名来获取其定义的二进制字节流。
- 将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。
- 在Java堆中生成一个代表这个类的
java.lang.Class
对象,作为对方法区中这些数据的访问入口。
可以使用系统提供的类加载器来完成加载,也可以自定义自己的类加载器来完成加载。
加载阶段完成后,虚拟机外部的二进制字节流就按照虚拟机所需的格式存储在方法区之中,而且在Java堆中也创建一个 java.lang.Class
类的对象,这样便可以通过该对象访问方法区中的这些数据。
连接
1.验证(确保被加载类正确)
确保Class文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。验证阶段大致会完成4个阶段的检验动作:
- 文件格式验证:验证字节流是否符合Class文件格式的规范;例如:是否以
0xCAFEBABE
开头、主次版本号是否在当前虚拟机的处理范围之内、常量池中的常量是否有不被支持的类型。 - 元数据验证:对字节码描述的信息进行语义分析(注意:对比javac编译阶段的语义分析),以保证其描述的信息符合Java语言规范的要求;例如:这个类是否有父类,除了
java.lang.Object
之外。 - 字节码验证:通过数据流和控制流分析,确定程序语义是合法的、符合逻辑的。
- 符号引用验证:确保解析动作能正确执行。
验证阶段是非常重要的,但不是必须的,它对程序运行期没有影响,如果所引用的类经过反复验证,那么可以考虑采用 -Xverifynone
参数来关闭大部分的类验证措施,以缩短虚拟机类加载的时间。
2.准备(类变量分配内存)
准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些内存都将在方法区中分配。对于该阶段有以下几点需要注意:
- 这时候进行内存分配的仅包括类变量(static),而不包括实例变量,实例变量会在对象实例化时随着对象一块分配在Java堆中。
- 这里所设置的初始值通常情况下是数据类型默认的零值(如0、0L、null、false等),而不是被在Java代码中被显式地赋予的值。
- 如果类字段的字段属性表中存在
ConstantValue
属性,即同时被final和static修饰,那么在准备阶段变量value就会被初始化为ConstValue属性所指定的值。- 假设上面的类变量value被定义为:
public static final intvalue=3
; - 编译时Javac将会为value生成ConstantValue属性,在准备阶段虚拟机就会根据
ConstantValue
的设置将value赋值为3。我们可以理解为static final常量在编译期就将其结果放入了调用它的类的常量池中
- 假设上面的类变量value被定义为:
关于变量的赋值
- 对基本数据类型来说,对于类变量(static)和全局变量,如果不显式地对其赋值而直接使用,则系统会为其赋予默认的零值,而对于局部变量来说,在使用前必须显式地为其赋值,否则编译时不通过。
- 对于同时被static和final修饰的常量,必须在声明的时候就为其显式地赋值,否则编译时不通过;而只被final修饰的常量则既可以在声明时显式地为其赋值,也可以在类初始化时显式地为其赋值,总之,在使用前必须为其显式地赋值,系统不会为其赋予默认零值。
- 对于引用数据类型reference来说,如数组引用、对象引用等,如果没有对其进行显式地赋值而直接使用,系统都会为其赋予默认的零值,即null。
- 如果在数组初始化时没有对数组中的各元素赋值,那么其中的元素将根据对应的数据类型而被赋予默认的零值。
3.解析(把符号引用转换为直接引用)
解析阶段是虚拟机将常量池内的符号引用(7类符号引用)替换为直接引用的过程.
解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用点限定符。符号引用就是一组符号来描述目标,可以是任何字面量。
直接引用就是直接指向目标的指针、相对偏移量或一个间接定位到目标的句柄。
初始化
初始化,为类的静态变量赋予正确的初始值,JVM负责对类进行初始化,主要对类变量进行初始化。在Java中对类变量进行初始值设定有两种方式:
- ①声明类变量是指定初始值
- ②使用静态代码块为类变量指定初始值
JVM初始化步骤
- 假如这个类还没有被加载和连接,则程序先加载并连接该类
- 假如该类的直接父类还没有被初始化,则先初始化其直接父类
- 假如类中有初始化语句,则系统依次执行这些初始化语句
类初始化时机:只有当对类的主动使用的时候才会导致类的初始化,类的主动使用包括以下六种:
- 创建类的实例,也就是new的方式
- 访问某个类或接口的静态变量,或者对该静态变量赋值
- 调用类的静态方法
- 反射(如
Class.forName(“com.shengsiyuan.Test”)
) - 初始化某个类的子类,则其父类也会被初始化
- Java虚拟机启动时被标明为启动类的类(
JavaTest
),直接使用java.exe
命令来运行某个主类
结束生命周期
在如下几种情况下,Java虚拟机将结束生命周期
- 执行了
System.exit()
方法 - 程序正常执行结束
- 程序在执行过程中遇到了异常或错误而异常终止
- 由于操作系统出现错误而导致Java虚拟机进程终止
3.类加载器
类加载器的层次关系
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lQyHIYZL-1609345895438)(D:\0000note\1基础note\img\类加载器.png)]
这里父类加载器并不是通过继承关系来实现的,而是采用组合实现的。
启动类加载器: BootstrapClassLoader
,负责加载存放在 JDK\jre\lib
(JDK代表JDK的安装目录,下同)下,或被 -Xbootclasspath
参数指定的路径中的,并且能被虚拟机识别的类库(如rt.jar,所有的java.开头的类均被 BootstrapClassLoader
加载)。启动类加载器是无法被Java程序直接引用的。
扩展类加载器: ExtensionClassLoader
,该加载器由 sun.misc.Launcher$ExtClassLoader
实现,它负责加载 JDK\jre\lib\ext
目录中,或者由 java.ext.dirs
系统变量指定的路径中的所有类库(如javax.开头的类),开发者可以直接使用扩展类加载器。
应用程序类加载器: ApplicationClassLoader
,该类加载器由 sun.misc.Launcher$AppClassLoader
来实现,它负责加载用户类路径(ClassPath)所指定的类,开发者可以直接使用该类加载器,如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。
自定义的类加载器。因为JVM自带的ClassLoader只是懂得从本地文件系统加载标准的java class文件,因此如果编写了自己的ClassLoader,便可以做到如下几点:
- 在执行非置信代码之前,自动验证数字签名。
- 动态地创建符合用户特定需要的定制化构建类。
- 从特定的场所取得java class,例如数据库中和网络中。
4.JVM类加载机制
- 全盘负责,当一个类加载器负责加载某个Class时,该Class所依赖的和引用的其他Class也将由该类加载器负责载入,除非显示使用另外一个类加载器来载入
- 父类委托,先让父类加载器试图加载该类,只有在父类加载器无法加载该类时才尝试从自己的类路径中加载该类
- 缓存机制,缓存机制将会保证所有加载过的Class都会被缓存,当程序中需要使用某个Class时,类加载器先从缓存区寻找该Class,只有缓存区不存在,系统才会读取该类对应的二进制数据,并将其转换成Class对象,存入缓存区。这就是为什么修改了Class后,必须重启JVM,程序的修改才会生效
5.双亲委派模型
双亲委派模型的工作流程是:如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把请求委托给父加载器去完成,依次向上,因此,所有的类加载请求最终都应该被传递到顶层的启动类加载器中,只有当父加载器在它的搜索范围中没有找到所需的类时,即无法完成该加载,子加载器才会尝试自己去加载该类。
- 1、当
AppClassLoader
加载一个class时,它首先不会自己去尝试加载这个类,而是把类加载请求委派给父类加载器ExtClassLoader
去完成。 - 2、当
ExtClassLoader
加载一个class时,它首先也不会自己去尝试加载这个类,而是把类加载请求委派给BootStrapClassLoader```去完成。 - 3、如果
BootStrapClassLoader
加载失败(例如在$JAVA_HOME/jre/lib
里未查找到该class),会使用ExtClassLoader
来尝试加载; - 4、若ExtClassLoader也加载失败,则会使用
AppClassLoader
来加载,如果AppClassLoader
也加载失败,则会报出异常ClassNotFoundException
。
- 系统类防止内存中出现多份同样的字节码
- 保证Java程序安全稳定运行
JVM内存结构
JVM内存结构主要有三大块:堆内存、方法区和栈。
方法区存储类信息、常量、静态变量等数据,是线程共享的区域,为与Java堆区分.
栈又分为java虚拟机栈和本地方法栈主要用于方法的执行。
1.JVM和系统调用之间的关系
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7X9wHaZr-1609345895443)(D:\0000note\1基础note\img\JVM调用.png)]
方法区和对是所有线程共享的内存区域;而java栈、本地方法栈和程序员计数器是运行是线程私有的内存区域。
控制参数
-
-Xms
设置堆的最小空间大小。 -
-Xmx
设置堆的最大空间大小。 -
-XX:NewSize
设置新生代最小空间大小。 -
-XX:MaxNewSize
设置新生代最大空间大小。 -
-XX:PermSize
设置永久代最小空间大小。 -
-XX:MaxPermSize
设置永久代最大空间大小。 -
-Xss
设置每个线程的堆栈大小。 -
老年代空间大小=堆空间大小-年轻代大空间大小
2.堆(Heap)
对于大多数应用来说,Java堆(Java Heap)是Java虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在JVM启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例都在这里分配内存。
Java堆是垃圾收集器管理的主要区域,因此很多时候也被称做“GC堆”。如果从内存回收的角度看,由于现在收集器基本都是采用的分代收集算法,所以Java堆中还可以细分为:新生代和老年代;再细致一点的有Eden空间、From Survivor空间、To Survivor空间等。
根据Java虚拟机规范的规定,Java堆可以处于物理上不连续的内存空间中,只要逻辑上是连续的即可,就像我们的磁盘空间一样。在实现时,既可以实现成固定大小的,也可以是可扩展的,不过当前主流的虚拟机都是按照可扩展来实现的(通过-Xmx和-Xms控制)。
如果在堆中没有内存完成实例分配,并且堆也无法再扩展时,将会抛出OutOfMemoryError
异常。
3.JVM栈(Stacks)
**它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的内存模型:**每个方法被执行的时候都会同时创建一个栈帧(Stack Frame)用于存储局部变量表、操作栈、动态链接、方法出口等信息。每一个方法被调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。
- 局部变量表存放了编译期可知的各种基本数据类型(boolean、byte、char、short、int、float、long、double)
- 局部变量表所需的内存空间在编译期间完成分配
- 其中64位长度的long和double类型的数据会占用2个局部变量空间(Slot),其余的数据类型只占用1个。
- 当进入一个方法时,这个方法需要在帧中分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表的大小。
- 对象引用(reference类型,它不等同于对象本身,根据不同的虚拟机实现,它可能是一个指向对象起始地址的引用指针,也可能指向一个代表对象的句柄或者其他与此对象相关的位置)
- returnAddress类型(指向了一条字节码指令的地址)。
在Java虚拟机规范中,对这个区域规定了两种异常状况:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常;如果虚拟机栈可以动态扩展(当前大部分的Java虚拟机都可动态扩展,只不过Java虚拟机规范中也允许固定长度的虚拟机栈),当扩展时无法申请到足够的内存时会抛出OutOfMemoryError异常。
4.本地方法(Native Method Stacks)
本地方法栈与虚拟机栈所发挥的作用是非常相似的,其区别不过是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而**本地方法栈则是为虚拟机使用到的Native方法服务。**虚拟机规范中对本地方法栈中的方法使用的语言、使用方式与数据结构并没有强制规定,因此具体的虚拟机可以自由实现它。甚至有的虚拟机(譬如Sun HotSpot虚拟机)直接就把本地方法栈和虚拟机栈合二为一。与虚拟机栈一样,本地方法栈区域也会抛出StackOverflowError和OutOfMemoryError异常。
5.程序计数器(Program Counter Register)
程序计数器(Program Counter Register)是一块较小的内存空间,它的作用可以看做是当前线程所执行的字节码的行号指示器。在虚拟机的概念模型里(仅是概念模型,各种虚拟机可能会通过一些更高效的方式去实现),字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。
由于Java虚拟机的多线程是通过线程轮流切换并分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器(对于多核处理器来说是一个内核)只会执行一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各条线程之间的计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。
如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是Natvie方法,这个计数器值则为空(Undefined)。
此内存区域是唯一一个在Java虚拟机规范中没有规定任何OutOfMemoryError情况的区域。
6.方法区
Java虚拟机规范把方法区描述为堆的一个逻辑部分
方法区(Method Area)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。
内存布局
-
在 JDK 6 时,方法区使用永久代实现,而永久代是堆内存中的一块区域(其和堆内存中的普通区域并不一样,可以想象成是相互隔离的)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DtGt95p4-1609345895447)(D:\0000note\1基础note\img\1.6堆.png)]
-
在 JDK 7 时,字符串常量池、静态变量从方法区(永久代)中移动到了堆内存(普通堆内存)中,这样字符串常量池就可以被 GC 管理。此时字符串常量池物理上存储于堆内存中,但其仍然属于方法区,此时方法区便是使用堆内存和永久代组合实现的
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cfRLY7bs-1609345895449)(D:\0000note\1基础note\img\1.7堆.png)]
-
在 JDK 8 时,永久代被废弃,转而使用元空间实现方法区。此时字符串常量池、静态变量仍然在堆中。此时方法区更加分裂,其由本地内存中的元空间和堆内存共同实现
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-a0bh5NfE-1609345895452)(D:\0000note\1基础note\img\1.8堆.png)]
GC算法
1.对象存活判断(一般有两种方式)
引用计数
每个对象有一个引用计数属性,新增一个引用时计数加1,引用释放时计数减1,计数为0时可以回收。此方法简单,无法解决对象相互循环引用的问题。
可达性分析(Reachability Analysis)
从GC Roots开始向下搜索,搜索所走过的路径称为引用链。当一个对象到GC Roots没有任何引用链相连时,则证明此对象是不可用的。不可达对象。
- 在Java语言中,GC Roots包括
- 虚拟机栈中引用的对象。
- 方法区中类静态属性实体引用的对象。
- 方法区中常量引用的对象。
- 本地方法栈中JNI引用的对象。
2.垃圾收集算法
标记-清除算法(Mark-Sweep)
如它的名字一样,算法分为“标记”和“清除”两个阶段:首先标记出所有可达的对象,在标记完成后统一回收掉所有被标记的对象。之所以说它是最基础的收集算法,是因为后续的收集算法都是基于这种思路并对其缺点进行改进而得到的。
-
缺点:
- 效率问题,标记和清除过程的效率都不高;
- 空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致,当程序在以后的运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。
复制算法(Copying)
它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。
-
优点
- 这样使得每次都是对其中的一块进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可
- 实现简单,运行高效。
-
缺点
- 只是这种算法的代价是将内存缩小为原来的一半,持续复制长生存期的对象则导致效率降低。
标记-整理算法(Mark-Compact)
复制收集算法在对象存活率较高时就要执行较多的复制操作,效率将会变低。所以在老年代一般不能直接选用这种算法。
根据老年代的特点,有人提出了另外一种"标记-整理"算法,标记过程仍然与"标记-清除"算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存
分代收集算法(Generational Collection)
把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YoMRUZW8-1609345895455)(D:\0000note\1基础note\img\分代收集堆划分.png)]
- 新生代(用的Minor GC)中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。
- 老年代(用的Major GC)中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用标记-整理算法来进行回收。
垃圾收集过程
-
当产生一个新对象,新对象优先在Eden区分配。
-
如果Eden区放不下这个对象,虚拟机会使用复制算法发生一次Minor GC,清除掉无用对象,同时将存活对象移动到Survivor的其中一个区(from区或者to区)。
- 第一次Yong GC(Minor GC)后,Eden区还存活的对象复制到Surviver区的“To”区,“From”区还存活的对象也复制到“To”区
- 再清空Eden区和From区,这样就等于“From”区完全是空的了,而“To”区也不会有内存碎片产生
- 等到第二次Yong GC时,“From”区和“To”区角色互换,很好的解决了内存碎片的问题。
-
虚拟机会给每个对象定义一个对象年龄(Age)计数器,对象在Survivor区中每“熬过”一次GC,年龄就会+1。待到年龄到达一定岁数,虚拟机就会将对象移动到年老代。
- 默认是15岁,
-XX:MaxTenuringThreshold
调整该值
- 默认是15岁,
-
发生MinorGC,对象会从Eden区进入Survivor区,如果Survivor区放不下从Eden区过来的对象时,此时会使用分配担保机制将对象直接移动到年老代。
-
计算逻辑是这样的:年龄1 年龄2 年龄n的多个对象总和超过
Survivor
区的50%,那就会把年龄n以上的对象都放入老年代。 -
如果设置了
-XX:PretenureSizeThreshold
这个参数,那么如果你要创建的对象大于这个参数的值,比如分配一个超大的字节数组,此时就直接把这个大对象放入到老年代,不会经过新生代。这么做就可以避免大对象在新生代,屡次躲过GC,还得把他们来复制来复制去的,最后才进入老年代,这么大的对象来回复制,是很耗费时间的。
-
-
分配担保策略
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LkUDDObL-1609345895458)(D:\0000note\1基础note\img\分配担保策略.png)]
JVM在发生Minor GC之前,虚拟机会检查老年代最大可用的连续空间是否大于新生代所有对象的总空间
- 如果小于,则虚拟机会查看
HandlePromotionFailure
设置项的值是否允许担保失败。如果HandlePromotionFailure=true
,那么会继续检查老年代最大可用连续空间是否大于历次晋升到老年代的对象的平均大小- 如果大于则尝试进行一次Minor GC,但这次Minor GC依然是有风险的;
- 如果小于或者
HandlePromotionFailure=false
,则改为进行一次Full GC。
- 如果大于,则此次Minor GC是安全的
- 如果小于,则虚拟机会查看