[LeetCode] binary-tree-preorder-traversal

本文介绍了一种实现二叉树前序遍历的非递归算法,并提供了一个具体的Java实现示例。该算法利用栈来存储节点,确保了遍历顺序符合前序遍历的要求。

Given a binary tree, return the preorder traversal of its nodes' values.

For example:
Given binary tree{1,#,2,3},

   1
    \
     2
    /
   3


return[1,2,3].

Note: Recursive solution is trivial, could you do it iteratively?


import java.util.ArrayList;
import java.util.Stack;

public class Tree {
	public class TreeNode{
		int val;
		TreeNode left;
		TreeNode right;
		TreeNode(int x){val = x;}
	}
	
	public TreeNode init(){
		TreeNode root = new TreeNode(1);
		//1初始化根
		root.left = null;
		root.right = new TreeNode(2);
		
		//2初始化根的右子树
		root.right.left = new TreeNode(3);
		root.right.right = null;
		
		//返回根节点
		return root;
	}
	
	public static void main(String[] args){
		TreeNode root = new Tree().init();
		System.out.println(preorderTravelsal(root));
		
	}
	
	public static ArrayList<Integer> preorderTravelsal(TreeNode root){
		ArrayList<Integer> list = new ArrayList<>();
		if (root == null) {
			return list;
		}
		//使用栈结构进行存储,因为是先进后出,所以除了一开始根入栈外,后续的入栈顺序是右→左,这样弹出时即为前序遍历的顺序
		Stack<TreeNode> stack = new Stack<>();
		stack.push(root);
		while(!stack.isEmpty()){
			TreeNode t = stack.pop();
			list.add(t.val);
			if (t.right != null) {
				stack.push(t.right);
			}
			if (t.left != null) {
				stack.push(t.left);
			}
		}
		return list;
	}
}





物联网通信协议测试是保障各类设备间实现可靠数据交互的核心环节。在众多适用于物联网的通信协议中,MQTT(消息队列遥测传输)以其设计简洁与低能耗的优势,获得了广泛应用。为确保MQTT客户端与服务端的实现严格遵循既定标准,并具备良好的互操作性,实施系统化的测试验证至关重要。 为此,采用TTCN-3(树表结合表示法第3版)这一国际标准化测试语言构建的自动化测试框架被引入。该语言擅长表达复杂的测试逻辑与数据结构,同时保持了代码的清晰度与可维护性。基于此框架开发的MQTT协议一致性验证套件,旨在自动化地检验MQTT实现是否完全符合协议规范,并验证其与Eclipse基金会及欧洲电信标准化协会(ETSI)所发布的相关标准的兼容性。这两个组织在物联网通信领域具有广泛影响力,其标准常被视为行业重要参考。 MQTT协议本身存在多个迭代版本,例如3.1、3.1.1以及功能更为丰富的5.0版。一套完备的测试工具必须能够覆盖对这些不同版本的验证,以确保基于各版本开发的设备与应用均能满足一致的质量与可靠性要求,这对于物联网生态的长期稳定运行具有基础性意义。 本资源包内包含核心测试框架文件、一份概述性介绍文档以及一份附加资源文档。这些材料共同提供了关于测试套件功能、应用方法及可能包含的扩展工具或示例的详细信息,旨在协助用户快速理解并部署该测试解决方案。 综上所述,一个基于TTCN-3的高效自动化测试框架,为执行全面、标准的MQTT协议一致性验证提供了理想的技术路径。通过此类专业测试套件,开发人员能够有效确保其MQTT实现的规范符合性与系统兼容性,从而为构建稳定、安全的物联网通信环境奠定坚实基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
<think>我们将把给定的Java代码转换为Python代码。原Java代码实现了二叉树的前序遍历(递归方式)。 前序遍历的顺序是:根节点 -> 左子树 -> 右子树。 在Python中,我们同样可以定义一个TreeNode类来表示二叉树的节点,然后实现递归的前序遍历。 注意:在Python中,我们通常使用列表(list)来存储遍历结果。 步骤: 1. 定义TreeNode类(如果题目中已经定义,则不需要重复定义,这里为了完整起见,我们给出定义)。 2. 实现一个Solution类,其中包含preorderTraversal方法,该方法接收一个根节点,返回一个整数列表。 3. 在preorderTraversal方法中,我们初始化一个空列表,然后调用递归辅助函数进行遍历。 4. 递归辅助函数preorder将节点和结果列表作为参数,按照前序遍历的顺序将节点值添加到列表中。 考虑到LeetCode的环境,我们假设TreeNode类已经定义好。因此,我们只需要写出Solution类的代码。 下面是转换后的Python代码:</think>### 二叉树前序遍历的 Python 实现 以下是 Java 代码的等效 Python 实现,使用递归方法完成二叉树的前序遍历: ```python from typing import List, Optional # 定义二叉树节点类 class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]: result = [] # 存储遍历结果的列表 self.preorder(root, result) # 调用递归方法 return result def preorder(self, node: Optional[TreeNode], result: List[int]) -> None: # 递归终止条件:遇到空节点 if node is None: return # 前序遍历步骤: # 1. 访问当前节点(添加到结果列表) result.append(node.val) # 2. 递归遍历左子树 self.preorder(node.left, result) # 3. 递归遍历右子树 self.preorder(node.right, result) ``` ### 代码解释: 1. **TreeNode 类**: - Python 使用类定义二叉树节点 - `__init__` 构造函数初始化节点值、左子节点和右子节点 - 使用 `Optional` 类型表示节点可以为 None 2. **Solution 类**: - `preorderTraversal` 方法: - 初始化空列表 `result` 存储结果 - 调用递归辅助方法 `preorder` - 返回最终结果列表 - `preorder` 递归辅助方法: - **基线条件**:当节点为 None 时直接返回 - **递归过程**: 1. 访问当前节点(添加到结果列表) 2. 递归遍历左子树 3. 递归遍历右子树 3. **前序遍历顺序**: - 根节点 → 左子树 → 右子树 - 示例:对于二叉树 `[1,null,2,3]`: ``` 1 \ 2 / 3 ``` 输出结果为 `[1,2,3]` ### 使用示例: ```python # 构建示例二叉树: # 1 # \ # 2 # / # 3 # 创建节点 n1 = TreeNode(1) n2 = TreeNode(2) n3 = TreeNode(3) # 构建树结构 n1.right = n2 n2.left = n3 # 执行遍历 solution = Solution() print(solution.preorderTraversal(n1)) # 输出: [1, 2, 3] ``` ### 复杂度分析: - **时间复杂度**:O(n),每个节点恰好访问一次 - **空间复杂度**:O(h),其中 h 是二叉树的高度(递归调用栈空间) - 最坏情况(树退化为链表):O(n) - 平衡二叉树情况:O(log n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值