Apache Calcite - 查询优化之自定义优化规则

RelOptRule简介

为了自定义优化规则,我们需要继承RelOptRule类。org.apache.calcite.plan.RelOptRule 是 Apache Calcite 中的一个抽象类,用于定义优化规则。优化规则是用于匹配查询计划中的特定模式,并将其转换为更优化的形式的逻辑。通过继承 RelOptRule,你可以创建自定义的优化规则,以满足特定的优化需求。

RelOptRule 的主要作用包括:

  • 定义匹配模式:通过构造函数中的 RelOptRuleOperand,定义规则所匹配的关系表达式树的模式。
  • 实现匹配逻辑:通过实现 onMatch 方法,定义当匹配模式被识别时,如何转换关系表达式树。
  • 管理规则应用:RelOptRule 还负责管理规则的应用,包括检查规则是否适用以及如何应用规则。

一个常见的自定义规则实现如下:

    class CustomFilterProjectTransposeRule extends RelOptRule {
   

        protected CustomFilterProjectTransposeRule(RelOptRuleOperand operand) {
   
            // 定义匹配模式
            super(operand);
        }

        @Override
        public void onMatch(RelOptRuleCall call) {
   
			// 触发匹配后,执行优化动作
        }
    }

RelOptRule 的关键组成部分

1. 构造函数

RelOptRule 的构造函数用于定义规则的匹配模式。匹配模式是通过 RelOptRuleOperand 来描述的,RelOptRuleOperand 定义了规则所匹配的关系表达式树的结构。

RelOptRule(RelOptRuleOperand operand, String description)

  • operand:描述优化规则匹配模式的一个关键类。它定义了规则所匹配的关系表达式树的结构,并且在 RelOptRule 中被用来指定规则的匹配条件。
  • description:规则的描述信息,通常用于调试和日志记录。

RelOptRuleOperand 的主要作用包括:

  • 描述匹配模式:通过指定关系表达式的类型和层次结构,描述优化规则所匹配的模式。
  • 支持递归匹配:允许定义嵌套的匹配模式,从而支持复杂的关系表达式树的匹配。
  • 配置匹配条件:可以通过各种配置选项来精确控制匹配行为,例如是否匹配子节点、是否匹配某些特定属性等。

2. onMatch 方法

onMatch 方法是一个抽象方法,必须在子类中实现。当规则匹配时,onMatch 方法会被调用,以执行具体的转换逻辑。

public abstract void onMatch(RelOptRuleCall call);

  • call:RelOptRuleCall 对象,包含了匹配的关系表达式节点,并提供了一些方法来转换这些节点。

RelOptRuleOperand

RelOptRuleOperand 是用于描述规则匹配模式的类。它定义了规则所匹配的关系表达式树的结构。

构造函数如下

<R extends RelNode> RelOptRuleOperand(
      Class<R> clazz,
      @Nullable RelTrait trait,
      Predicate<? super R> predicate,
      RelOptRuleOperandChildPolicy childPolicy,
      ImmutableList<RelOptRuleOperand> children)
  • Class clazz: 这是一个泛型参数,指定了匹配的关系表达式节点的类型。例如,Filter.class 或 Project.class。R 是继承自 RelNode 的类型。
  • @Nullable RelTrait trait: 这是一个可选参数,指定了匹配节点的特性(trait)。特性可以用来描述节点的一些额外属性,例如排序、分区等。
    如果不需要特定的特性,可以传入 null。
  • Predicate<? super R> predicate: 这是一个谓词,用于进一步限制匹配的节点。只有当节点满足这个谓词时,才会匹配成功。例如,你可以使用谓词来检查节点的某些属性或状态。
  • RelOptRuleOperandChildPolicy childPolicy: 这是一个枚举类型,指定了子节点的匹配策略。常见的策略包括:
    • ANY:匹配任意数量的子节点。
    • SOME:匹配至少一个子节点。
    • LEAF:匹配没有子节点的节点。
    • UNORDERED:匹配子节点的顺序不重要。这个参数用于控制匹配模式中子节点的数量和顺序。
  • ImmutableList children:这是一个不可变列表,包含了子节点的匹配模式。每个子节点的匹配模式也是一个 RelOptRuleOperand 实例。通过嵌套定义,可以描述复杂的关系表达式树的匹配模式。

实际创建RelOptRuleOperand我们通过工厂方法来完成,这个工厂方法的主要功能是创建一个 RelOptRuleOperand 实例。它通过调用 RelOptRuleOperand 的构造函数,传递必要的参数来初始化匹配模式。

  public static <R extends RelNode> RelOptRuleOperand operand(
      Class<R> clazz,
      RelOptRuleOperand first,
      RelOptRuleOperand... rest) {
   
    return operand(clazz, some(first, rest));
  }
  • Class clazz: 这是一个泛型参数,指定了匹配的关系表达式节点的类型。例如,Filter.class 或 Project.class。R 是继承自 RelNode 的类型。
  • RelOptRuleOperand first:这是第一个子节点的匹配模式,类型为 RelOptRuleOperand。
  • RelOptRuleOperand… rest: 这是一个可变参数,表示零个或多个额外的子节点的匹配模式,类型为 RelOptRuleOperand。

这里的节点均是指关系表达式树种的节点。

RelOptRuleCall

类是优化规则(RelOptRule)应用过程中非常关键的一个类。它用于表示在优化过程中某个规则的匹配和应用状态,并提供了相关方法来处理匹配到的关系表达式(RelNode)树。

方法

  • transformTo(RelNode rel):这个方法用于将变换后的关系表达式节点提交给优化器。参数 rel 是变换后的关系表达式节点。
    调用这个方法后,优化器会将新的节点纳入进一步的优化过程中。
  • getPlanner():返回当前的优化器实例(RelOptPlanner)。
  • getRule():返回当前正在应用的优化规则(RelOptRule)。
  • rel(int ordinal): 返回匹配到的关系表达式节点。参数 ordinal 是节点在匹配模式中的位置索引。
  • getChild(int ordinal):返回匹配到的关系表达式节点的子节点。参数 ordinal 是子节点在匹配模式中的位置索引。

rel(int ordinal)方法 ordinal参数
假设我们定义了一个匹配模式,用于匹配一个 Filter 节点,其子节点是一个 Project 节点,而 Project 节点的子节点是一个 TableScan 节点。这个匹配模式可以通过以下方式定义:

  • Filter 节点的位置索引为 0。
  • Project 节点的位置索引为 1。
  • TableScan 节点的位置索引为 2。

这些索引是根据匹配模式中节点的定义顺序确定的。

节点的输入(inputs)

通常指的是这个节点的子节点。在关系表达式树中,每个节点都可以有一个或多个输入节点,这些输入节点就是它的子节点。输入节点的结构和关系决定了整个关系表达式树的结构。

在关系表达式树中,每个节点代表一个关系操作(如筛选、投影、连接等),而这些节点通过输入节点(子节点)连接在一起,形成一个树形结构。根节点表示最终的查询结果,而叶节点通常表示数据源(如表扫描)。

输入节点(子节点)是关系表达式树中每个节点的直接子节点。它们定义了当前节点的操作对象。例如:

  • Filter 节点:其输入节点是需要过滤的数据源,可以是一个表扫描节点(TableScan)或另一个操作节点(如投影节点)。
  • Project 节点:其输入节点是需要投影的数据源,可以是一个表扫描节点或另一个操作节点(如过滤节点)。
  • Join 节点:其输入节点是需要进行连接的两个数据源,可以是表扫描节点或其他操作节点。

一个自定义优化规则的例子

输入sql

SELECT name, age
FROM (
    SELECT name, age, salary
    FROM employees
) AS subquery
WHERE age > 30

我们生成对应的关系表达式树

LogicalProject(department=[$1])
  LogicalFilter(condition=[>($0, 10)])
    LogicalProject(id=[$0], department=[$1])
      LogicalTableScan(table=[[MY_SCHEMA, department_table]])

自定义优化规则,自定义规则的作用就是将过滤下推到投影之前。最终调用transform方法
将整个匹配到的子树(即 Filter 节点及其子节点 Project)替换为新的子树(即 newProject 节点及其子节点)。

    public class CustomFilterProjectTransposeRule extends RelOptRule {
   

        int invoke = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值