二分查找
旨在说明二分法则的比较条件可以看情况设置更合适的
题目
符合下列属性的数组 arr 称为 山脉数组 :
arr.length >= 3
存在 i(0 < i < arr.length - 1)使得:
arr[0] < arr[1] < ... arr[i-1] < arr[i]
arr[i] > arr[i+1] > ... > arr[arr.length - 1]
给你由整数组成的山脉数组 arr ,返回任何满足 arr[0] < arr[1] < … arr[i - 1] < arr[i] > arr[i + 1] > … > arr[arr.length - 1] 的下标 i 。
题解
class Solution {
public int peakIndexInMountainArray(int[] arr) {
//本质就是返回最大值的索引下标
int left = 0 ;
int right = arr.length - 1;
int result = 0 ;
int mid = 0 ;
while(left<=right){
mid = left + (right-left)/2 ;
//开始判断两情况
if(arr[mid]>arr[mid+1]){
//midd大,说明还可以向左边缩进
result = mid ; //更新result的数字
right = mid -1;
}else{
//向右边找
left = mid +1 ;
}
}
return result ;
}
}
这篇博客介绍了如何使用二分查找算法在特殊的山脉数组中找到峰值元素的下标。峰值元素是指数组中某个点两边的元素都比它小。题目要求找到这样的峰值元素,并给出了一种实现思路:不断比较中间元素与其右侧元素,根据比较结果缩小查找范围,最终找到峰值下标的正确位置。
488

被折叠的 条评论
为什么被折叠?



