PYTHON——random

本文介绍了Python中random模块的使用方法,包括如何从列表中随机选择元素、如何获取指定范围内的随机整数、如何生成随机浮点数等。通过具体实例展示了random模块的主要函数,如choice、sample、randint、random和randrange。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python 随机库——random

import random

random.choice(['a', 'b', 'c'])    ->    'a'  or  'b'  or  'c'

random.sample(['a', 'b', 'c'], 1)  ->    ['a']  or  ['b']  or  ['c']

random.randint(1, 3)      ->  1  or  2  or  3 

random.random()         ->    0.015709333050641705     between   0-1

random.randrange(0, n)    ===  random.randint(0, n-1)

 

Kmeans聚类算法是一种无监督学习算法,用于将数据集划分为不同的簇。它是一个迭代算法,通过计算每个数据点与簇中心的距离,将数据点分配到最近的簇中心。然后,根据分配的数据点更新簇中心。重复这个过程,直到簇中心不再变化或达到预设的迭代次数。 下面是一个使用Python实现Kmeans聚类算法的示例: ``` python import numpy as np import matplotlib.pyplot as plt # 生成随机数据 np.random.seed(0) X = np.random.randn(100, 2) # 初始化K个簇中心 K = 3 centers = X[np.random.choice(len(X), K, replace=False)] # 迭代聚类 for i in range(10): # 计算每个数据点最近的簇中心 distances = np.linalg.norm(X[:, np.newaxis, :] - centers, axis=2) labels = np.argmin(distances, axis=1) # 更新簇中心 for k in range(K): centers[k] = np.mean(X[labels == k], axis=0) # 可视化聚类结果 colors = ['r', 'g', 'b'] for k in range(K): plt.scatter(X[labels == k, 0], X[labels == k, 1], c=colors[k]) plt.scatter(centers[:, 0], centers[:, 1], marker='*', s=200, c='#050505') plt.show() ``` 在这个例子中,我们生成了一个随机数据集,然后初始化了3个簇中心。然后,我们执行10次迭代,计算每个数据点最近的簇中心,并根据分配的数据点更新簇中心。最后,我们可视化聚类结果,其中每个簇用不同的颜色表示,簇中心用星号表示。 Kmeans聚类算法是一种简单有效的聚类算法,但它有一些缺点。例如,它需要预先指定簇的数量K,这可能不是很容易确定。此外,它对初始簇中心的选择很敏感,可能会导致陷入局部最优解。因此,在实际应用中,需要对它进行改进,例如Kmeans++算法和层次聚类算法等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值