题目:
Prime Path
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 23902 | Accepted: 13210 |
Description

— It is a matter of security to change such things every now and then, to keep the enemy in the dark.
— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know!
— I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.
— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime!
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.
— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.
Now, the minister of finance, who had been eavesdropping, intervened.
— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.
— Hmm, in that case I need a computer program to minimize the cost. You don't know some very cheap software gurus, do you?
— In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.
1033The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.
1733
3733
3739
3779
8779
8179
Input
One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).
Output
One line for each case, either with a number stating the minimal cost or containing the word Impossible.
Sample Input
3 1033 8179 1373 8017 1033 1033
Sample Output
6 7 0
题意:给一个四位素数,问最早经过几次变化可以到达输入的另一个四位素数。若无法到达输出”Impossible“,否则输出步数。输入保证这两个四位素数没有前导0。
每次变化可以改变一个数位上的数字(隐含:千位上的数不能变成0)
思路:先用素数筛把9999以内的素数打表都找出来,从当前状态枚举所有可以一步到达的数字,若可变到的数字是素数就加入BFS队列。最先到达目标素数的步数就是最小步数。走过的数字要做标记避免TLE。
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<map>
#include<vector>
#include<stack>
typedef long long ll;
using namespace std;
bool Prime[10010];
bool use[10010];
void getPrime(){
memset(Prime,1,sizeof(Prime));
Prime[2] = 1;
for(int i = 2 ; i*i<=9999 ; i++){
if(Prime[i]){
for(int j = i+i ; j<=9999 ; j+=i){
Prime[j] = 0;
}
}
}
}
int start,end;
int tempN;
struct node{
int num;
int step;
};
node t;
node nxt;
int main(){
ios::sync_with_stdio(false);
getPrime();
int cases;
cin>>cases;
int ans;
while (cases--){
cin>>start>>end;
if(start == end){
cout<<0<<endl;
continue;
}
memset(use,0,sizeof(use));
use[start] = 1;
t.num = start, t.step = 0;
queue<node> q;
q.push(t);
ans = -1;
while(!q.empty()){
t = q.front(); q.pop();
if(t.num == end){
ans = t.step;
break;
}
int qian = t.num/1000;
int bai = t.num%1000 /100;
int shi = t.num%100 /10;
int ge = t.num%10;
for(int i = 0 ; i<=9 ; i++){
tempN = qian*1000 + i*100 + shi*10 + ge;
if(Prime[tempN] && !use[tempN]){
nxt.num = tempN; nxt.step = t.step+1;
use[tempN] = 1;
q.push(nxt);
}
tempN = qian*1000 + bai*100 + i*10 + ge;
if(Prime[tempN] && !use[tempN]){
nxt.num = tempN; nxt.step = t.step+1;
use[tempN] = 1;
q.push(nxt);
}
tempN = qian*1000 + bai*100 + shi*10 + i;
if(Prime[tempN] && !use[tempN]){
nxt.num = tempN; nxt.step = t.step+1;
use[tempN] = 1;
q.push(nxt);
}
if(i==0) continue; //千位上的数不能变成0
tempN = i*1000 + bai*100 + shi*10 + ge;
if(Prime[tempN] && !use[tempN]){
nxt.num = tempN; nxt.step = t.step+1;
use[tempN] = 1;
q.push(nxt);
}
}
}
if(ans == -1){
cout<<"Impossible"<<endl;
}
else{
cout<<ans<<endl;
}
}
return 0;
}