Sutskever2014_Sequence to Sequence Learning with Neural Networks

Sutskever2014的研究提出使用LSTM进行序列到序列学习,通过一个LSTM读取输入序列,另一个LSTM生成输出序列。这种模型适用于输入和输出序列长度不同且关系复杂的情况。输入序列反转能提高LSTM的记忆利用率。Encoder-Decoder框架是端到端学习算法,但受限于固定长度的语义向量。为解决此问题,Attention模型引入,允许解码器在生成每个输出词时关注输入序列的特定部分,提高了解码的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

INFO: Sutskever2014_Sequence to Sequence Learning with Neural Networks

ABSTRACT

  1. Use one LSTM to read the input sequence, one timestep at a time, to obtain large fixed-dimensional vector representation, and then to use another LSTM to extract the output sequence from that vector. The second LSTM is essentially a recurrent neural network language model except that it is conditioned on the input sequence.
  2. It is not clear how to apply an RNN to problems whose input and the output sequences have different lengths with complicated and non-monotonic relationships.
  3. Reversing the input sentences results in LSTMs with better memory utilization.
    (Instead of mapping the sentence a, b, c to the sentence α, β, γ, the LSTM is asked to map c, b, a to α, β, γ, where α, β, γ is the translation of a, b, c.)

RELEVANT INFORMATION:

  1. Encoder - Decoder:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值