pytorch中torch.stack()函数总结

本文总结了PyTorch中torch.stack()函数的基本功能和规律分析。该函数用于在特定维度上连接多个张量,创建一个扩维的张量。详细介绍了当dim分别为0、1、2时的连接效果,并提出了对于n维张量按dim=x连接的递归规律猜想。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、基本功能

pytroch官方文档对于这个函数的描述很简略。只有一句话:在维度上连接(concatenate)若干个张量。(这些张量形状相同)

经过代码总结归纳,可以得到stack(tensors,dim=0,out=None)函数的功能:
将若干个张量在dim维度上连接,生成一个扩维的张量,比如说原来你有若干个2维张量,连接可以得到一个3维的张量。

设待连接张量维度为n,dim取值范围为-n-1~n,这里得提一下为负的意义:-i为倒数第i个维度。举个例子,对于2维的待连接张量,-1维即3维,-2维即2维。

上代码:

a=torch.tensor([[1,2,3],[4,5,6]])
b=torch.tensor([[10,20,30],[40,50,60]])
c=torch.tensor([[100,200,300],[400,500,600]])
print(torch.stack([a,b,c],dim=0))
print(torch.stack([a,b,c],dim=1))
print(torch.stack([a,b,c],dim=2))
print(torch.stack([a,b,c],dim=0).size())
print(torch.stack([a,b,c],dim=1).size())
print(torch.stack([a,b,c],dim=2).size())
#输出结果为:
tensor([[[  1,   2,   3],
         [  4,   5,   6]],

        [[ 10,  20,  30],
         [ 40,  50,  60]],

        [[100, 200, 300],
         [400, 500, 600]]])
tensor([[[  1,   2,   3],
         [ 10,  20,  30],
         [100, 200, 300]],

        [[  4,   5,   6],
         [ 40,  50,  60],
         [400, 500, 600]]])
tensor([[[  1,  10, 100],
         [  2,  20, 200],
         [  3,  30, 300]],

        [[  4,  40, 400],
         [  5,  50, 500],
         [  6,  60, 600]]])
torch.Size([3, 2, 3])
torch.Size([2, 3, 3])
torch.Size([2, 3, 3])

二、规律分析

通过代码运行结果,我们不难发现,stack(tensors,dim=0,out=None)函数的运行机制可以等价为

  • dim=0时,将tensor在一维上连接,简单来说就是,就是将tensor1,tensor2…tensor n,连接为【tensor1,tensor2… tensor n】(就是在这里产生了扩维)
  • dim=1时,将每个tensor的第i行按行连接组成一个新的2维tensor,再将这些新tensor按照dim=0的方式连接。
  • dim=2时,将每个tensor的第i行转置后按列连接组成一个新的2维tensor,再将这些新tesnor按照dim=0的方式连接

可以得到一个结论:n维(n>=2)待连接张量按dim=x的方式连接等价于:

  • 若x=0,参照上面的规律进行连接
  • 若x>0,对每个张量的第一个维度下的张量对应地按照dim=x-1的方式进行连接得到若干个新张量,这些新张量按照dim=0的方式进行连接。
  • 很明显,该规律具有递归的特性,x=0,1,2的基础情况已经给出。

注:以上规律是在未看函数实现源码基础上未加证明的猜测。如有错误之处,欢迎指正

"sgmediation.zip" 是一个包含 UCLA(加利福尼亚大学洛杉矶分校)开发的 sgmediation 插件的压缩包。该插件专为统计分析软件 Stata 设计,用于进行中介效应分析。在社会科学、心理学、市场营销等领域,中介效应分析是一种关键的统计方法,它帮助研究人员探究变量之间的因果关系,尤其是中间变量如何影响因变量与自变量之间的关系。Stata 是一款广泛使用的统计分析软件,具备众多命令和用户编写的程序来拓展其功能,sgmediation 插件便是其中之一。它能让用户在 Stata 中轻松开展中介效应分析,无需编写复杂代码。 下载并解压 "sgmediation.zip" 后,需将解压得到的 "sgmediation" 文件移至 Stata 的 ado 目录结构中。ado(ado 目录并非“adolescent data organization”缩写,而是 Stata 的自定义命令存放目录)目录是 Stata 存放自定义命令的地方,应将文件放置于 "ado\base\s" 子目录下。这样,Stata 启动时会自动加载该目录下的所有 ado 文件,使 "sgmediation" 命令在 Stata 命令行中可用。 使用 sgmediation 插件的步骤如下:1. 安装插件:将解压后的 "sgmediation" 文件放入 Stata 的 ado 目录。如果 Stata 安装路径是 C:\Program Files\Stata\ado\base,则需将文件复制到 C:\Program Files\Stata\ado\base\s。2. 启动 Stata:打开 Stata,确保软件已更新至最新版本,以便识别新添加的 ado 文件。3. 加载插件:启动 Stata 后,在命令行输入 ado update sgmediation,以确保插件已加载并更新至最新版本。4
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值