先上题目:
For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format
The graph contains n nodes which are labeled from 0 to
n - 1. You will be given the number n and a list of undirected
edges (each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges. Since all edges are undirected,
[0, 1] is the same as [1, 0] and thus will not appear together in
edges.
Example 1:
Given n = 4, edges = [[1, 0], [1, 2], [1, 3]]
0
|
1
/ \
2 3
return [1]
Example 2:
Given n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2
\ | /
3
|
4
|
5
return [3, 4]
分析:
首先排除特殊情况,即只有1个结点或无结点。
然后考虑一般情况,这里结合上述的2个example,我觉得可以借助BFS,只要我们多次遍历,不停地删除页结点(度为1的结点),到最后剩余1或2结点时,那边是我们所求的答案。代码如下:
class Solution {
public:
vector<int> findMinHeightTrees(int n,
vector<pair<int,
int>>& edges) {
// 初始化边
vector<unordered_set<int>> adj(n);
for (pair<int,
int> p : edges) {
adj[p.first].insert(p.second);
adj[p.second].insert(p.first);
}
// 仅一个结点的情况
vector<int> current;
if (n == 1) {
current.push_back(0);
return current;
}
// 寻找第一批叶子结点
for (int i =
0; i < adj.size(); ++i) {
if (adj[i].size() ==
1) {
current.push_back(i);
}
}
// BFS
while (true) {
vector<int> next;
for (int node : current) {
for (int neighbor : adj[node]) {
adj[neighbor].erase(node);
if (adj[neighbor].size() ==
1) next.push_back(neighbor);
}
}
if (next.empty())
return current;
current = next;
}
}
};
总的来说,这道题我认为考验的还是对图搜索的理解,感受那种从叶子一步一步到根的过程(实际上是从根到叶子的反过程)。也就是说,我们采用BFS,检索到了叶子节点,然后删除,自上而下的搜索,自下而上的删除,一步一步得到了根。
如有错误,请读者指教。
本文介绍了一种使用广度优先搜索(BFS)策略找到给定无向图中所有最小高度树的方法。通过逐步移除度为1的节点直至剩下1或2个节点作为根节点,实现对最小高度树的有效寻找。
317

被折叠的 条评论
为什么被折叠?



