GPT系列学习笔记

GPT-3:大型语言模型的突破与挑战

GPT1


GPT-3

关于GPT-3的主要事实:

  • 模型分类:GPT-3有8个不同的模型,参数从1.25亿到1750亿不等。

  • 模型大小:最大的GPT-3模型有1750亿参数。这比最大的BERT模型大470倍(3.75亿个参数)

  • 体系结构:GPT-3是一种自回归模型,使用仅有解码器的体系结构。使用下一个单词预测目标进行训练

  • 学习方式:GPT-3通过很少的学习,学习时没有梯度更新

需要训练数据:GPT-3需要较少的训练数据。它可以从非常少的数据中学习,这使得它的应用程序可以用于数据较少的领域
在这里插入图片描述
关键假设:

  • 模型规模的增加和对更大数据的训练可以导致性能的提高
  • 单一模型可以在许多NLP任务上提供良好的性能。
  • 模型可以从新数据中推断,不需要进行微调
  • 该模型可以解决从未训练过的数据集上的问题。

早期的预训练模型-微调:
在这里插入图片描述

  • GPT-3采用了不同的学习方法。不需要大量标记数据来推断新问题。
  • 相反,它可以不从数据(零次学习 Zero-Shot Learning )中
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值