目录
Q1
Bruce deposits 100 into a bank account. His account is credited interest at an annual nominal rate of interest of 4% convertible semiannually.
At the same time, Peter deposits 100 into a separate account. Peter’s account is credited interest at an annual force of interest of δ \delta δ.
After 7.25 years, the value of each account is the same.
Calculate δ \delta δ.
A. 0.0388 B. 0.0392 C. 0.0396 D. 0.0404 E. 0.0414
解答:
知识点是 All-in-one Relationship Formula 中利率和利息力之间转换。
Given the same principal invested for the same period of time yields the same accumulated value, the two measures of interest i ( 2 ) = 0.04 i^{(2)}=0.04 i(2)=0.04 and δ \delta δ must be equivalent, which means: ( 1 + i ( 2 ) 2 ) 2 = e δ (1+\frac{i^{(2)}}{2})^2=e^\delta (1+2i(2))2=eδ over a one-year period.
e δ = ( 1 + i ( 2 ) 2 ) 2 = 1.0 2 2 = 1.0404 e^\delta=(1+\frac{i^{(2)}}{2})^2=1.02^2=1.0404 eδ=(1+2i(2))2=1.022=1.0404
δ = ln ( 1.0404 ) = 0.0396 \delta=\ln(1.0404)=0.0396 δ=ln(1.0404)=0.0396
Bruce 存入 100 元,账户按名义年利率 4% 每半年复利计息。因此,每半年的实际利率为 4 % 2 = 2 % = 0.02 \frac{4\%}{2} = 2\% = 0.02 24%=2%=0.02。7.25 年后,Bruce 账户的价值为:
100 × ( 1.02 ) 2 × 7.25 = 100 × ( 1.02 ) 14.5 100 \times (1.02)^{2 \times 7.25} = 100 \times (1.02)^{14.5} 100×(1.02)2×7.25=100×(1.02)14.5
Peter 存入 100 元,账户按年常数利息力 δ \delta δ 计息。7.25 年后,Peter 账户的价值为:
100 × e δ × 7.25 100 \times e^{\delta \times 7.25} 100×eδ×7.25
根据题意,7.25 年后两个账户价值相等:
100 × ( 1.02 ) 14.5 = 100 × e 7.25 δ 100 \times (1.02)^{14.5} = 100 \times e^{7.25 \delta} 100×(1.02)14.5=100×e7.25δ
除以 100 得:
( 1.02 ) 14.5 = e 7.25 δ (1.02)^{14.5} = e^{7.25 \delta} (1.02)14.5=e7.25δ
对两边取自然对数:
ln ( ( 1.02 ) 14.5 ) = ln ( e 7.25 δ ) \ln \left( (1.02)^{14.5} \right) = \ln \left( e^{7.25 \delta} \right) ln((1.02)14.5)=ln(e7.25δ)
14.5 ln ( 1.02 ) = 7.25 δ 14.5 \ln(1.02) = 7.25 \delta 14.5ln(1.02)=7.25δ
解出 δ \delta δ:
δ = 14.5 ln ( 1.02 ) 7.25 = 2 ln ( 1.02 ) = ln ( ( 1.02 ) 2 ) = ln ( 1.0404 ) = 0.0396 \delta = \frac{14.5 \ln(1.02)}{7.25}=2 \ln(1.02)= \ln \left( (1.02)^2 \right) = \ln(1.0404)=0.0396 δ=7.2514.5ln(1.02)=2ln(1.02)=ln((1.02)2)=ln(1.0404)=0.0396
Q2
Kathryn deposits 100 into an account at the beginning of each 4-year period for 40 years. The account credits interest at an annual effective interest rate of i i i.
The accumulated amount in the account at the end of 40 years is X X X, which is 5 times the accumulated amount in the account at the end of 20 years.
Calculate X X X.
A. 4695
B. 5070
C. 5445
D. 5820
E. 6195
解答:
知识点是付款频次小于计息频次,计息频次是年而付款频次是每四年。
凯瑟琳(Kathryn)在40年期间,每4年的年初存入100元。账户按年有效利率 i i i 计息。40年末的累积金额为 X X X,且 X X X 是20年末累积金额的5倍。需要计算 X X X。
常规解法
-
存款时间点:
- 存款发生在时间 t = 0 , 4 , 8 , … , 36 t = 0, 4, 8, \ldots, 36 t=0,4,8,…,36(以年为单位)。
- 总存款次数:40年 / 4年 = 10次(因为每4年存一次,且包括起始点)。
-
累积金额计算:
- 设 r = ( 1 + i ) 4 r = (1 + i)^4 r=(1+i)4,其中 i i i 为年有效利率。这表示每4年的累积因子。
- 40年末累积金额 X X X:
- 每笔存款累积至40年末:
- 第一笔( t = 0 t = 0 t=0)累积40年: 100 × ( 1 + i ) 40 = 100 × r 10 100 \times (1 + i)^{40} = 100 \times r^{10} 100×(1+i)40=100×r10(因为 r = ( 1 + i ) 4 r = (1 + i)^4 r=(1+i)4,所以 ( 1 + i ) 40 = r 10 (1 + i)^{40} = r^{10} (1+i)40=r10)。
- 第二笔( t = 4 t = 4 t=4)累积36年: 100 × ( 1 + i ) 36 = 100 × r 9 100 \times (1 + i)^{36} = 100 \times r^9 100×(1+i)36=100×r9。
- …
- 第十笔( t = 36 t = 36 t=36)累积4年: 100 × ( 1 + i ) 4 = 100 × r 100 \times (1 + i)^4 = 100 \times r 100×(1+i)4=100×r。
- 因此, X = 100 ( r + r 2 + r 3 + ⋯ + r 10 ) X = 100 (r + r^2 + r^3 + \cdots + r^{10}) X=100(r+r2+r3+⋯+r10)。
- 这是一个几何级数(首项 r r r,公比 r r r,项数10):
X = 100 r r 10 − 1 r − 1 X = 100 r \frac{r^{10} - 1}{r - 1} X=100rr−1r10−1
- 每笔存款累积至40年末:
- 20年末累积金额 A 20 A_{20} A20:
- 存款至 t = 16 t = 16 t=16(因为 t = 20 t = 20 t=20 时,存款发生在 t = 0 , 4 , 8 , 12 , 16 t = 0, 4, 8, 12, 16 t=0,4,8,12,16,共5次)。
- 每笔存款累积至20年末:
- 第一笔( t = 0 t = 0 t=0)累积20年: 100 × ( 1 + i ) 20 = 100 × r 5 100 \times (1 + i)^{20} = 100 \times r^5 100×(1+i)20=100×r5。
- 第二笔( t = 4 t = 4 t=4)累积16年: 100 × ( 1 + i ) 16 = 100 × r 4 100 \times (1 + i)^{16} = 100 \times r^4 100×(1+i)16=100×r4。
- …
- 第五笔( t = 16 t = 16 t=16)累积4年: 100 × ( 1 + i ) 4 = 100 × r 100 \times (1 + i)^4 = 100 \times r 100×(1+i)4=100×r。
- 因此, A 20 = 100 ( r + r 2 + r 3 + r 4 + r 5 ) A_{20} = 100 (r + r^2 + r^3 + r^4 + r^5) A20=100(r+r2+r3+r4+r5)。
- 几何级数(首项 r r r,公比 r r r,项数5):
A 20 = 100 r r 5 − 1 r − 1 A_{20} = 100 r \frac{r^5 - 1}{r - 1} A20=100rr−1r5−1
-
建立方程:
- 给定 X = 5 A 20 X = 5 A_{20} X=5A20:
100 r r 10 − 1 r − 1 = 5 × 100 r r 5 − 1 r − 1 . 100 r \frac{r^{10} - 1}{r - 1} = 5 \times 100 r \frac{r^5 - 1}{r - 1}. 100rr−1r10−1=5×100rr−1r5−1. - 简化(假设 r ≠ 1 r \neq 1 r=1,即 i ≠ 0 i \neq 0 i=0):
r 10 − 1 = 5 ( r 5 − 1 ) . r^{10} - 1 = 5 (r^5 - 1). r10−1=5(r5−1).
r 10 − 5 r 5 + 4 = 0. r^{10} - 5r^5 + 4 = 0. r10−5r5+4=0. - 令 u = r 5 u = r^5 u=r5,则方程变为二次方程:
u 2 − 5 u + 4 = 0. u^2 - 5u + 4 = 0. u2−5u+4=0. - 解:
u = 5 ± 25 − 16 2 = 5 ± 3 2 . u = \frac{5 \pm \sqrt{25 - 16}}{2} = \frac{5 \pm 3}{2}. u=25±25−16=25±3.- u = 4 u = 4 u=4 或 u = 1 u = 1 u=1.
- 若 u = 1 u = 1 u=1,则 r 5 = 1 r^5 = 1 r5=1,即 r = 1 r = 1 r=1(对应 i = 0 i = 0 i=0),但此时存款无利息,验证不满足 X = 5 A 20 X = 5A_{20} X=5A20,故舍去。
- 因此, u = 4 u = 4 u=4,即 r 5 = 4 r^5 = 4 r5=4.
- 给定 X = 5 A 20 X = 5 A_{20} X=5A20:
-
求 X X X:
- 由 r 5 = 4 r^5 = 4 r5=4,得 r 10 = ( r 5 ) 2 = 4 2 = 16 r^{10} = (r^5)^2 = 4^2 = 16 r10=(r5)2=42=16.
- 代入 X X X 的公式:
X = 100 r r 10 − 1 r − 1 = 100 r 16 − 1 r − 1 = 100 r 15 r − 1 = 1500 r r − 1 . X = 100 r \frac{r^{10} - 1}{r - 1} = 100 r \frac{16 - 1}{r - 1} = 100 r \frac{15}{r - 1} = 1500 \frac{r}{r - 1}. X=100rr−1r10−1=100rr−116−1=100rr−115=1500r−1r. - 其中 r = ( 1 + i ) 4 = 4 1 / 5 r = (1 + i)^4 = 4^{1/5} r=(1+i)4=41/5(因为 r 5 = 4 r^5 = 4 r5=4).
- 数值计算:
- 4 1 / 5 ≈ 1.31951 4^{1/5} \approx 1.31951 41/5≈1.31951(因为 1.3195 1 5 ≈ 4 1.31951^5 \approx 4 1.319515≈4).
- 计算 r r − 1 = 1.31951 1.31951 − 1 = 1.31951 0.31951 ≈ 4.1302 \frac{r}{r - 1} = \frac{1.31951}{1.31951 - 1} = \frac{1.31951}{0.31951} \approx 4.1302 r−1r=1.31951−11.31951=0.319511.31951≈4.1302.
- 则 X = 1500 × 4.1302 = 6195.3 ≈ 6195 X = 1500 \times 4.1302 = 6195.3 \approx 6195 X=1500×4.1302=6195.3≈6195.
特殊解法:Off Annuity
- Annuity Due:
100 s 40 ‾ ∣ a 4 ‾ ∣ = 5 ( 100 ) s 20 ‾ ∣ a 4 ‾ ∣ 100\frac{s_{\overline{40}|}}{a_{\overline{4}|}}=5(100)\frac{s_{\overline{20}|}}{a_{\overline{4}|}} 100a4∣s40∣=5(100)a4∣s20∣
( 1 + i ) 40 − 1 i = 5 ( 1 + i ) 20 − 1 i \frac{(1+i)^{40}-1}{i} = 5 \frac{(1+i)^{20}-1}{i} i(1+i)40−1=5i(1+i)20−1
简化得 ( 1 + i ) 40 − 5 ( 1 + i ) 20 + 4 = 0 (1+i)^{40} - 5(1+i)^{20} + 4 = 0 (1+i)40−5(1+i)20+4=0,解为 ( 1 + i ) 20 = 4 (1+i)^{20} = 4 (1+i)20=4(与上述 r 5 = 4 r^5 = 4 r5=4 一致,因为 r 5 = [ ( 1 + i ) 4 ] 5 = ( 1 + i ) 20 r^5 = [(1+i)^4]^5 = (1+i)^{20} r5=[(1+i)4]5=(1+i)20).
X = 100 1.31951 − 1.3195 1 11 1 − 1.31951 ≈ 6195 X = 100 \frac{1.31951 - 1.31951^{11}}{1 - 1.31951} \approx 6195 X=1001−1.319511.31951−1.3195111≈6195
Q3
Eric deposits 100 into a savings account at time 0, which pays interest at an annual nominal rate of i i i, compounded semiannually.
Mike deposits 200 into a different savings account at time 0, which pays simple interest at an annual rate of i i i.
Eric and Mike earn the same amount of interest during the last 6 months of the 8 th 8^{\text{th}} 8th year.
Calculate i i i.
A. 9.06%
B. 9.26%
C. 9.46%
D. 9.66%
E. 9.86%
解答:
知识点是简单利率和复利的利息计算。
Eric’s (compound) interest in the last 6 months of the 8th year is 100 ( 1 + i 2 ) 15 i 2 100\left(1+\frac{i}{2}\right)^{15} \frac{i}{2} 100(1+2i)152i.
Mike’s (simple) interest for the same period is 200 i 2 200 \frac{i}{2} 2002i.
Thus,
100 ( 1 + i 2 ) 15 i 2 = 200 i 2 100\left(1+\frac{i}{2}\right)^{15} \frac{i}{2} = 200 \frac{i}{2} 100(1+2i</
SOA EXAM FM金融数学习题1 - 50

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



