Codeforces557D Vitaly and Cycle 【染色判二分图 + 组合数学】

题目链接:Codeforces 557D Vitaly and Cycle


D. Vitaly and Cycle
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

After Vitaly was expelled from the university, he became interested in the graph theory.

Vitaly especially liked the cycles of an odd length in which each vertex occurs at most once.

Vitaly was wondering how to solve the following problem. You are given an undirected graph consisting of n vertices and m edges, not necessarily connected, without parallel edges and loops. You need to find t — the minimum number of edges that must be added to the given graph in order to form a simple cycle of an odd length, consisting of more than one vertex. Moreover, he must find w — the number of ways to add t edges in order to form a cycle of an odd length (consisting of more than one vertex). It is prohibited to add loops or parallel edges.

Two ways to add edges to the graph are considered equal if they have the same sets of added edges.

Since Vitaly does not study at the university, he asked you to help him with this task.

Input

The first line of the input contains two integers n and m ( — the number of vertices in the graph and the number of edges in the graph.

Next m lines contain the descriptions of the edges of the graph, one edge per line. Each edge is given by a pair of integers aibi(1 ≤ ai, bi ≤ n) — the vertices that are connected by the i-th edge. All numbers in the lines are separated by a single space.

It is guaranteed that the given graph doesn't contain any loops and parallel edges. The graph isn't necessarily connected.

Output

Print in the first line of the output two space-separated integers t and w — the minimum number of edges that should be added to the graph to form a simple cycle of an odd length consisting of more than one vertex where each vertex occurs at most once, and the number of ways to do this.

Examples
input
4 4
1 2
1 3
4 2
4 3
output
1 2
input
3 3
1 2
2 3
3 1
output
0 1
input
3 0
output
3 1
Note

The simple cycle is a cycle that doesn't contain any vertex twice.



题意:给定一个无向图,问你最少增加多少条边可以得到一个奇圈。问方案数。

思路:考虑奇圈的判定,如果连通图不是一个二分图,必定存在奇圈。这是一个充要条件。

首先比较坑的地方有两个: 
1、无边时,需要连3条边,方案数为n * (n-1) * (n-2) / 6。 
2、不存在节点数目大于2的连通分支时,需要连2条边,方案数为(n-2) * m。

其他情况,我们先判断每一个连通分支,有一个不是二分图,那么一定存在奇圈。反之,我们黑白染色每个连通分支里面的节点,对于任意的两个黑点,总可以得到一个奇圈,同理白点。那么我们就统计每个连通分支里面黑点数目cnt1[]、白点数目cnt2[],对整体贡献是cnt1[i] * (cnt1[i] - 1) / 2 + cnt2[i] * (cnt2[i] - 1) / 2。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int maxn = 1e5+5;
vector<int> G[maxn];
bool vis[maxn];
int color[maxn], cnt1[maxn], cnt2[maxn], num[maxn], pos[maxn];
bool judge(int u, int id)
{
    if(!vis[u]) num[id]++;
    pos[u] = id;vis[u] = true;
    for(int i = 0; i < G[u].size(); i++)
    {
        int v = G[u][i];
        if(color[u] == color[v]) return false;
        if(!color[v])
        {
            color[v] = 3 - color[u];
            if(!judge(v, id)) return false;
        }
    }
    return true;
}
int main()
{
    int n, m;
    while(scanf("%d%d", &n, &m) != EOF)
    {
        if(m == 0)
        {
            printf("3 %I64d\n", 1LL*n*(n-1)*(n-2)/6);
            continue;
        }
        for(int i = 1; i <= n; i++)
        {
            vis[i] = false;G[i].clear();
            cnt1[i] = cnt2[i] = num[i] = color[i] = 0;
        }
        for(int i = 0; i < m; i++)
        {
            int u, v;
            scanf("%d%d", &u, &v);
            G[u].push_back(v);
            G[v].push_back(u);
        }
        bool flag = false;
        int top = 1;
        for(int i = 1; i <= n; i++)
        {
            if(vis[i]) continue;
            color[i] = 1;
            if(!judge(i, top))
            {
                flag = true;
                break;
            }
            top++;
        }
        if(flag)
        {
            printf("0 1\n");
            continue;
        }
        for(int i = 1; i <= n; i++)
        {
            if(color[i] == 1)
                cnt1[pos[i]]++;
            else
                cnt2[pos[i]]++;
        }
        ll ans = 0;
        for(int i = 1; i < top; i++)
        {
            if(num[i] <= 2) continue;
            ans += 1LL * cnt1[i] * (cnt1[i]-1) / 2 + 1LL * cnt2[i] * (cnt2[i]-1) / 2;
        }
        if(ans == 0)
            printf("2 %I64d\n", 1LL * (n-2) * m);
        else
            printf("1 %I64d\n", ans);
    }
    return 0;
}


### Codeforces Problem 1014D 解答与解释 当前问题并未提供关于 **Codeforces Problem 1014D** 的具体描述或相关背景信息。然而,基于常见的竞赛编程问题模式以及可能涉及的主题领域(如数据结构、算法优化等),可以推测该问题可能属于以下类别之一: #### 可能的解法方向 如果假设此问题是典型的计算几何或者图论类题目,则通常会涉及到如下知识点: - 图遍历(DFS 或 BFS) - 贪心策略的应用 - 动态规划的状态转移方程设计 由于未给出具体的输入输出样例和约束条件,这里无法直接针对Problem 1014D 提供精确解答。但是可以根据一般性的解决思路来探讨潜在的方法。 对于类似的复杂度较高的题目,在实现过程中需要注意边界情况处理得当,并且要充分考虑时间效率的要求[^5]。 以下是伪代码框架的一个简单例子用于说明如何构建解决方案逻辑流程: ```python def solve_problem(input_data): n, m = map(int, input().split()) # 初始化必要的变量或数组 graph = [[] for _ in range(n)] # 构建邻接表或其他形式的数据表示方法 for i in range(m): u, v = map(int, input().split()) graph[u].append(v) result = [] # 执行核心算法部分 (比如 DFS/BFS 遍历) visited = [False]*n def dfs(node): if not visited[node]: visited[node] = True for neighbor in graph[node]: dfs(neighbor) result.append(node) for node in range(n): dfs(node) return reversed(result) ``` 上述代码仅为示意用途,实际应用需依据具体题目调整细节参数设置及其功能模块定义[^6]。 #### 关键点总结 - 明确理解题意至关重要,尤其是关注特殊测试用例的设计意图。 - 对于大规模数据集操作时应优先选用高效的时间空间性能表现良好的技术手段。 - 结合实例验证理论推导过程中的每一步骤是否合理有效。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值