codeforces 814D An overnight dance in discotheque(贪心)

本文介绍了一种针对夜店中舞者活动范围的算法,旨在通过将舞者分为两个时段活动来最大化覆盖区域的面积。算法考虑了舞者的活动范围不相交且可能相互包含的情况,并提供了一个具体的实现方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D. An overnight dance in discotheque
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

The crowdedness of the discotheque would never stop our friends from having fun, but a bit more spaciousness won't hurt, will it?

The discotheque can be seen as an infinite xy-plane, in which there are a total of n dancers. Once someone starts moving around, they will move only inside their own movement range, which is a circular area Ci described by a center (xi, yi) and a radius riNo two ranges' borders have more than one common point, that is for every pair (i, j) (1 ≤ i < j ≤ n) either ranges Ci and Cj are disjoint, or one of them is a subset of the other. Note that it's possible that two ranges' borders share a single common point, but no two dancers have exactly the same ranges.

Tsukihi, being one of them, defines the spaciousness to be the area covered by an odd number of movement ranges of dancers who are moving. An example is shown below, with shaded regions representing the spaciousness if everyone moves at the same time.

But no one keeps moving for the whole night after all, so the whole night's time is divided into two halves — before midnight and after midnight. Every dancer moves around in one half, while sitting down with friends in the other. The spaciousness of two halves are calculated separately and their sum should, of course, be as large as possible. The following figure shows an optimal solution to the example above.

By different plans of who dances in the first half and who does in the other, different sums of spaciousness over two halves are achieved. You are to find the largest achievable value of this sum.

Input

The first line of input contains a positive integer n (1 ≤ n ≤ 1 000) — the number of dancers.

The following n lines each describes a dancer: the i-th line among them contains three space-separated integers xiyi and ri( - 106 ≤ xi, yi ≤ 1061 ≤ ri ≤ 106), describing a circular movement range centered at (xi, yi) with radius ri.

Output

Output one decimal number — the largest achievable sum of spaciousness over two halves of the night.

The output is considered correct if it has a relative or absolute error of at most 10 - 9. Formally, let your answer be a, and the jury's answer be b. Your answer is considered correct if .

Examples
input
5
2 1 6
0 4 1
2 -1 3
1 -2 1
4 -1 1
output
138.23007676
input
8
0 0 1
0 0 2
0 0 3
0 0 4
0 0 5
0 0 6
0 0 7
0 0 8
output
289.02652413
Note

The first sample corresponds to the illustrations in the legend.



题意:有n个人跳舞,然后每个人跳舞的区域是一个圆,圆与圆不想交。然后现在把这些人分成白天和黑夜跳舞的两批。如果一个人跳舞的区域被覆盖奇数次,他的面积就需要被减去,被覆盖偶数次他的面积就会被加上,然后现在问你跳舞合适的最大面积是多少。


分析:对于每个圆,我们O(n)地算一遍它能包含哪些圆,然后把能被包含的圆的层数+1。

ans=s(1)+s(2)-s(3)+s(4)-s(5)+...,即加上1号圆的面积,对于后面的圆偶数编号的加上,奇数编号的减去

#include<bits/stdc++.h>
using namespace std;
#define pi acos(-1)
struct Node
{
    double x, y, r;
    int num;
}a[1005];
bool cmp(Node p, Node q)
{
    return p.r > q.r;
}
bool judge(Node u, Node v)
{
    return (u.x - v.x)*(u.x - v.x) + (u.y - v.y)*(u.y - v.y) < (u.r + v.r) * (u.r + v.r);
}
double cal(Node u)
{
    return u.r * u.r * pi;
}
int main()
{
    int n;
    scanf("%d", &n);
    for(int i = 1; i <= n; i++)
        scanf("%lf%lf%lf", &a[i].x, &a[i].y, &a[i].r);
    sort(a+1, a+n+1, cmp);
    for(int i = 1; i <= n; i++)
        for(int j = i+1; j <= n; j++)
            if(judge(a[i], a[j]))
                a[j].num++;
    double ans = 0;
    for(int i = 1; i <= n; i++)
        if(!a[i].num)
            ans += cal(a[i]);
        else if(a[i].num & 1)
            ans += cal(a[i]);
        else
            ans -= cal(a[i]);
        printf("%.8f\n", ans);
    return 0;
}








### Codeforces Problem 1014D 解答与解释 当前问题并未提供关于 **Codeforces Problem 1014D** 的具体描述或相关背景信息。然而,基于常见的竞赛编程问题模式以及可能涉及的主题领域(如数据结构、算法优化等),可以推测该问题可能属于以下类别之一: #### 可能的解法方向 如果假设此问题是典型的计算几何或者图论类题目,则通常会涉及到如下知识点: - 图遍历(DFS 或 BFS) - 贪心策略的应用 - 动态规划的状态转移方程设计 由于未给出具体的输入输出样例和约束条件,这里无法直接针对Problem 1014D 提供精确解答。但是可以根据一般性的解决思路来探讨潜在的方法。 对于类似的复杂度较高的题目,在实现过程中需要注意边界情况处理得当,并且要充分考虑时间效率的要求[^5]。 以下是伪代码框架的一个简单例子用于说明如何构建解决方案逻辑流程: ```python def solve_problem(input_data): n, m = map(int, input().split()) # 初始化必要的变量或数组 graph = [[] for _ in range(n)] # 构建邻接表或其他形式的数据表示方法 for i in range(m): u, v = map(int, input().split()) graph[u].append(v) result = [] # 执行核心算法部分 (比如 DFS/BFS 遍历) visited = [False]*n def dfs(node): if not visited[node]: visited[node] = True for neighbor in graph[node]: dfs(neighbor) result.append(node) for node in range(n): dfs(node) return reversed(result) ``` 上述代码仅为示意用途,实际应用需依据具体题目调整细节参数设置及其功能模块定义[^6]。 #### 关键点总结 - 明确理解题意至关重要,尤其是关注特殊测试用例的设计意图。 - 对于大规模数据集操作时应优先选用高效的时间空间性能表现良好的技术手段。 - 结合实例验证理论推导过程中的每一步骤是否合理有效。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值