超结MOS/低压MOS在5G基站电源上的应用-REASUNOS瑞森半导体

本文介绍了5G基站的电源系统,包括UPS和HVDC供电方式,重点阐述了MOS管在5G电源中的应用,如超结MOSFET在PFC线路和Flyback线路的优势,以及瑞森半导体的低压SGTMOS系列在同步整流线路中的推荐。

一、前言

5G基站是5G网络的核心设备,实现有线通信网络与无线终端之间的无线信号传输,5G基站主要分为宏基站和小基站。5G基站由于通信设备功耗大,采用由电源插座、交直流配电、防雷器、整流模块和监控模块组成的电气柜。所以顾名思义,5G电源就是指5G通讯设备专用电源。

5G基站电源,分两大主流:目前,5G基站供电系统有两大主流,一是UPS供电系统,二是HVDC 供电系统。5G基站电源的发展趋势主要向着解决方案小型化、高频化、高可靠性以及效率提升的目标前进。

二、典型应用拓扑

针对MOS管在5G电源上的应用,推荐瑞森半导体两款产品系列;

在PFC线路和Flyback线路,推荐瑞森半导体超结MOSFET系列:

由原深沟槽工艺革新成多层外延工艺,具有低导通电阻,优异EMI特性,低损耗,高效率,低温升等特性。能够显著降低高电压下单位面积的导通电阻,进而降低导通损耗。同时,超结MOSFET拥有极低的FOM值,从而拥有极低的开关能量损耗和驱动能量损耗。

为适应电源系统高效率小型化的需求,同步整流线路图推荐使用瑞森半导体低压SGT MOS系列:

采用SGT沟槽屏蔽栅设计及工艺制造技术,具有更高的工艺稳定性和可靠性及更快的开关速度、更小的栅电荷和更高的应用效率等优点。

三、推荐产品选型

针对5G线路图的PFC线路和Flyback线路,推荐瑞森半导体超结MOSFET系列。

内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
### MOS技术原理 MOS是一种先进的功率半导体器件,采用了多层外延工艺技术制造。这种构显著优化了传统MOSFET的性能参数,在保持较低导通电阻的同时减少了寄生电容的影响[^3]。具体来说,MOS的核心在于其独特的PN交替排列设计,这使得器件能够在较高的击穿电压下维持更低的导通电阻。 #### 技术优势 - **低导通电阻**:由于特殊的PN构设计,MOS能够实现比常规MOSFET更低的导通电阻,从而减少传导过程中的能量损失。 - **高频工作能力**:得益于较小的寄生电容(尤其是输出电容和米勒电容),MOS适合应用于高频场景中,能有效降低开关损耗并提升整体效率。 - **热管理优异**:相比其他类型的功率器件,MOS具有更好的散热表现,因此可以在更高温度环境下稳定运行。 ### 应用领域 MOS广泛用于各种电力电子设备之中,尤其是在需要高效转换与快速响应的应用场合表现出色。例如: 1. **微型逆变器** 微型逆变器是分布式光伏发电系统的重要组成部分之一。在此类应用中,半导体制造的MOS因其卓越的EMI特性而备受青睐,有助于简化电磁兼容性测试流程,并提高系统的可靠性和安全性。 2. **开关电源(Switching Power Supply, SMPS)** 在现代SMPS设计里,工程师们倾向于选用MOS作为核心元件来构建高效的DC-DC变换器或者AC-DC适配器解决方案。这些产品不仅体积小巧而且具备出色的动态负载调整能力和瞬态恢复速度[^2]。 3. **电机驱动控制器(Motor Drive Controller)** 对于无刷直流电动机(BLDC Motor)以及其他复杂运动控制系统而言,利用高性能的MOS可以精确控制转矩波形形状进而改善整机性能指标如噪声水平、振动幅度以及能耗情况等方面均有所改进。 ```python # 示例代码展示如何计算理想条件下的功耗 def calculate_power_loss(rds_on, current): return rds_on * (current ** 2) rds_on = 0.015 # 单位欧姆 current = 10 # 安培 power_loss = calculate_power_loss(rds_on, current) print(f"Ideal power loss is {power_loss}W") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瑞森半导体

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值