Algorithm:1046. 最后一块石头的重量
Review: Linked List Problems
Tip/Tech:二叉堆
Share:Great products do less, but better;伟大的产品做的少,但是更好
Algorithm
1046. 最后一块石头的重量
https://leetcode-cn.com/problems/last-stone-weight/
直接优先队列解决。
因为这里有个隐藏条件,就是如果两个石头没有被同时粉碎,剩下了一个,那么这个石头还是要被放入到石头堆里的,所以用优先队列就很好解决这个问题。
class Solution {
public int lastStoneWeight(int[] stones) {
if (stones == null ||stones.length == 0) {
return 0;
}
if (stones.length == 1) {
return stones[0];
}
PriorityQueue<Integer> priorityQueue = new PriorityQueue<>((o2, o1) -> o1 - o2);
for (int i = 0, len = stones.length; i < len; ++i) {
priorityQueue.offer(stones[i]);
}
while (priorityQueue.size() > 1) {
int first = priorityQueue.poll();
int second = priorityQueue.poll();
if (first != second) {
priorityQueue.offer(first - second);
}
}
if (priorityQueue.size() > 0){
return priorityQueue.poll();
} else {
return 0;
}
}
}
时间复杂度就是O(NlogN)O(NlogN)O(NlogN)
空间复杂度O(N)O(N)O(N)
答案很简答,但是提交就奇了怪了,代码都差不多,但是提交下来,时间却差了很多。非常的奇怪。。。
不知道LeetCode这个测评机制是咋样的。
Review
Linked List Problems
这个是在学习数据结构的时候,看到的,一个关于链表的论文,里面充分的列举了有关于链表的18个问题
- Count()
- GetNth()
- DeleteList()
- Pop()
- InsertNth()
- SortedInsert()
- InsertSort()
- Append()
- FrontBackSplit()
- RemoveDuplicates()
- MoveNode()
- AlternatingSplit()
- ShuffleMerge()
- SortedMerge()
- MergeSort()
- SortedIntersect()
- Reverse()
- RecursiveReverse()
论文里面都是用c来实现的,有空我要用Java来全部实现了。
Tip/Tech
二叉堆的实现。
public class MaxHeapMine<E extends Comparable> implements Heap<E> {
private ArrayList<E> data;
private int size;
public MaxHeapMine() {
data = new ArrayList<>();
size = 0;
}
public MaxHeapMine(E[] elements) {
data = new ArrayList<>();
size = 0;
for (E item : elements) {
add(item);
}
}
@Override
public void add(E e) {
data.add(e);
size++;
shiftUp(size - 1);
}
@Override
public E delete() {
if (size <= 0) {
throw new IllegalArgumentException("size under 0.");
}
E ans = data.get(0);
data.set(0, data.get(size - 1));
data.remove(size - 1);
size--;
shiftDown(0);
return ans;
}
@Override
public E find() {
if (size <= 0) {
throw new IllegalArgumentException("size under 0.");
}
return data.get(0);
}
@Override
public void replace(E e) {
data.set(0, e);
shiftDown(0);
}
/**
* 上移操作
* @param index 下移的坐标
*/
private void shiftUp(int index) {
int parentIndex = (index - 1) / 2;
while (parentIndex >= 0 && data.get(parentIndex).compareTo(data.get(index)) < 0) {
swap(index, parentIndex);
index = parentIndex;
parentIndex = (index - 1) / 2;
}
}
/**
* 下移操作
* @param index 下移的坐标
*/
private void shiftDown(int index) {
int maxIndex = index;
while (true) {
int leftChildIndex = 2 * index + 1;
if (leftChildIndex < size && data.get(leftChildIndex).compareTo(data.get(maxIndex)) > 0) {
maxIndex = leftChildIndex;
}
int rightChildIndex = 2 * index + 2;
if (rightChildIndex < size && data.get(rightChildIndex).compareTo(data.get(maxIndex)) > 0) {
maxIndex = rightChildIndex;
}
if (maxIndex == index) {
break;
}
swap(maxIndex, index);
index = maxIndex;
}
}
private void swap(int a, int b) {
E temp = data.get(a);
data.set(a, data.get(b));
data.set(b, temp);
}
public static void main(String[] args) {
Integer[] test = {1, 2, 3, 4, 0, 9, 8, 7, 6, 5, 20, 19, 18, 17, 16};
MaxHeapMine<Integer> maxHeapMine = new MaxHeapMine<>(test);
for (int i = 0, len = test.length; i < len; ++i) {
System.out.println(maxHeapMine.delete());
System.out.println(maxHeapMine.find());
}
}
}
Share
Great products do less, but better
(1)Products start small and focused.
产品由小而专注的开始
(2)The product scope grows.
产品范围不断扩大。
(3)Do less, but better
Do less, but better
Think about the most successful products you know. The ones you use everyday, as a customer. Twitter, Lyft, Venmo, Slack. One single value proposition, articulated through the various product layers: features, architecture, interactions, usability, branding, communications.
少做,但做得更好
考虑一下您所知道的最成功的产品。您每天使用的客户。 Twitter,Lyft,Venmo,Slack。一个单一的价值主张,贯穿各个产品层:功能,体系结构,交互,可用性,品牌,沟通。

本文介绍了一种使用优先队列(二叉堆)解决LeetCode 1046题“最后一块石头的重量”的高效算法。通过构建最大堆,每次取出两个最大元素进行比较并重新插入差值,直至剩余一个元素即为最终结果。文章还探讨了二叉堆的实现,并分享了关于伟大产品的理念。
783

被折叠的 条评论
为什么被折叠?



