light1010 - Knights in Chessboard【找规律】

本文探讨了在给定尺寸的棋盘上放置骑士的问题,目标是找出最多能放置多少个骑士使得它们不会互相攻击。文章提供了算法实现,并通过样例输入输出展示了如何计算不同大小棋盘上的最大骑士数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1010 - Knights in Chessboard
Time Limit: 1 second(s)Memory Limit: 32 MB

Given an m x n chessboard where you want to place chess knights. You have to find the number of maximum knights that can be placed in the chessboard such that no two knights attack each other.

Those who are not familiar with chess knights, note that a chess knight can attack 8 positions in the board as shown in the picture below.


Input

Input starts with an integer T (≤ 41000), denoting the number of test cases.

Each case contains two integers m, n (1 ≤ m, n ≤ 200). Here m and n corresponds to the number of rows and the number of columns of the board respectively.

Output

For each case, print the case number and maximum number of knights that can be placed in the board considering the above restrictions.

Sample Input

Output for Sample Input

3

8 8

3 7

4 10

Case 1: 32

Case 2: 11

Case 3: 20

 


#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int main()
{
	int n,m,t,k=1;
	scanf("%d",&t);
	while(t--){
		scanf("%d%d",&n,&m);
		printf("Case %d: ",k++);
		if(min(n,m)==1){
			printf("%d\n",max(n,m));
		}
		else if(min(n,m)==2){
			printf("%d\n",max(n,m)/4*4+2*min(max(n,m)%4,2));
		}
		else {
			printf("%d\n",(n*m+1)/2);
		}
	}
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值