英伟达也来卷AI绘画,支持几笔完成精准构图,还提出扩散模型进化新方向

部署运行你感兴趣的模型镜像
丰色 发自 凹非寺
量子位 | 公众号 QbitAI

英伟达也来卷扩散模型了。

这一次,它将文本生成图像的效果再次提高一个level。

2d195c066cdb874d1a2340b46a2f6e12.png

比如,面对超长文本描述,它(下图最右列)比Stable Diffusion和DALL-E 2表达的都更精确:

28b943208f796f277d2fb0d339156641.png

注意第一组图刺猬的夏威夷风衬衣,以及第三组图猫猫的头盔。

当描述要求展示出具体的文字时,也只有它(下图最右列)可以准确做到:

1f98307a0a4c2cc7944adb5e07bf9d2a.png

除此之外,即时样式转换也是小菜一碟,只需一张样图就成。

比如来一个梵高风的泰迪熊冲浪:

c1518aa586cb57a9da861996615249be.png

或者这样的鸭子:

97fd33f6c95ec69dd427192209acd81e.png

当然,英伟达最擅长的分割图作画,它也支持,可以让你用寥寥几笔完成精准构图:

cdb8bc06f4162f9948f87c0fcc84f768.png

(其中,每一个颜色块代表一个元素。)

看起来还阔以吧,它背后的方法也值得说道说道。

两个文本编码器+专家去噪网络

我们知道,扩散模型包含两个阶段:

从原图逐步到噪声的正向过程/扩散过程;

以及从噪声逐步到原图的逆向过程。

第二个过程就是去噪,作者想到,在此阶段,面对不同的噪声水平时都用不同的模型进行处理,也就是开发一个叫做“专家去噪”的网络,效果是不是会更好一些?

于是就诞生了这个新的AIGC工具:eDiffi

eDiffi的pipeline由三个扩散模型级联而成

一个可以合成64x64分辨率样本的基础模型,以及两个可以分别将图像分辨率递增到256x256和1024x1024的超分辨率模型。

f5c2c935a49fa3e316dbd42f3c80cdd1.png

当模型接收到一条文本描述时,会首先同时计算T5 XXL embedding和CLIP text embedding

注意是用了两个文本编码器哦,不然效果不会这么好:

613f564061df03a7153155ab408e9ce2.png

Ps. T5指的是谷歌的文本到文本转换器(Text-to-Text Transfer Transformer ),它可以帮助模型做到更精准地理解文本描述。

接着选择根据参考图像计算得出的CLIP图像编码,用作样式向量(可选可不选)。

然后再将所有embedding都馈送到上面的级联扩散模型中,最后逐渐生成分辨率为1024x1024的图像。

再来说说主角:去噪专家(Denoising experts)网络。

我们知道,在扩散模型中,图像的合成是通过迭代去噪过程来完成的,这个过程又指的是从随机噪声中逐渐生成图像。

在传统的扩散模型训练中,都是训练一个模型来对整个噪声分布进行去噪。

而在作者的这个框架中,他们训练了一组专家去噪器,专门用于在生成过程的不同步骤进行去噪。

如下图所示,作者是先从一个完整的随机噪声开始,然后分多个步骤逐步操作,最终生成一张骑自行车的熊猫图像。

81d92589e3c5de5c8a718e3a82135edd.png

一位StabilityAI员工认为,这种方法可能是扩散模型的下一大突破/进步。因为不止英伟达的这个eDiffi,还有百度的文心ERNIE-ViLG 2.0也是这么做的。

2c5605eb7a68b54e53ec2d28d7898a4a.png

zero-shot FID上获SOTA得分

eDiffi模型是在“公共和专有数据集的集合”上训练而成。

其中基础模型花了256块英伟达A100 GPU,两个超分辨率模型则花了128块A100。

用于PK的模型包括GLIDE、Make-A-Scene、DALL-E 2、Stable Diffusion和谷歌的两个图像合成系统Imagen和Parti。

作者从COCO验证集中随机提取30000个文本描述,然后让这些模型生成结果,纪录zero-shot FID-30K得分。

最终,eDiffi获得了最低也就是最佳分数,说明它与文字的匹配度是最高的。

01b474bc86d72dae709725f79ab45ca7.png

最后,再来两组效果展示和对比:

15938bb065577bd91e0f1eb486f2acfa.png

以及风格迁移的(第一列为参考风格,第二列为结果,第三列为参考图像):

d651ff8cc15134da66eb0935a35f64eb.png

关于作者

一共有12位,都来自英伟达,其中3位华人:

毕业于康奈尔大学的博士黄勋(AdaIN一作)、毕业于清华本科和斯坦福博士的Song Jiaming以及英伟达高级研究总监Liu MingYu。

1a786be5776e926e2e169d6c9811b26a.png

目前,该模型还未开源,不过有人表示改动不算大,所以实现起来并不难,应该很快就有人复现出来了。

论文地址:
https://arxiv.org/abs/2211.01324

项目主页:
https://deepimagination.cc/eDiffi/

参考链接:
[1]https://twitter.com/iScienceLuvr/status/1587973173932195840
[2]https://twitter.com/_akhaliq/status/1587971650007564289
[3]https://www.unite.ai/nvidias-ediffi-diffusion-model-allows-painting-with-words-and-more/

「AIGC系列直播 - 应用落地与商业化」直播报名

技术热潮之外,AIGC如何实际落地?又如何长期商业变现?

11月3-4日晚7点到8点,量子位智库联手国内头部AIGC企业及投资机构,为你解答,扫码预约~

ad75db17aac50b64592c086e4998ce69.png

点这里关注我 👇 记得标星噢 ~

您可能感兴趣的与本文相关的镜像

Qwen3-8B

Qwen3-8B

文本生成
Qwen3

Qwen3 是 Qwen 系列中的最新一代大型语言模型,提供了一整套密集型和专家混合(MoE)模型。基于广泛的训练,Qwen3 在推理、指令执行、代理能力和多语言支持方面取得了突破性进展

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值