Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
思路:要确保路径之和最小,一定要把所有的情况都走过来,同时记录所遇到的最小值。上一个结果会影响下一个结果,并不能决定下一个结果,这就是这个题目的规律。f(i,j) = min{f(i-1,j)+(i,j) , f(i-1,j-1)+(i,j)}
public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
if(triangle.size()<1)
return 0;
int[][] f = new int[triangle.size()][triangle.get(triangle.size()-1).size()];
for(int i=0; i<f.length; i++)
for(int j=0; j<f[0].length; j++)
f[i][j]=Integer.MAX_VALUE;
f[0][0] = triangle.get(0).get(0);
for(int i=1; i<triangle.size(); i++)
for(int j=0; j<i+1; j++){
if(j<1)
f[i][j] = f[i-1][j]+triangle.get(i).get(j);
else
f[i][j] = Math.min(f[i-1][j],f[i-1][j-1])+triangle.get(i).get(j);
}
Arrays.sort(f[triangle.size()-1]);
return f[triangle.size()-1][0];
}
}
还有更加简洁的方法,从后往前逆运算。 待续~