浅谈搜索剪枝

本文探讨了在算法竞赛中搜索算法的重要性,特别是深度优先搜索(DFS)中的剪枝技术。剪枝是为了提高搜索效率,通过判断排除无法产生最优解的路径。剪枝原则包括正确性、准确性和高效性,常见的剪枝类型有可行性剪枝、最优性剪枝和记忆化搜索。文章以codevs1288 埃及分数问题为例,阐述如何在实际问题中应用剪枝策略来优化搜索算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

搜索是OI之路上,人人必会的强大算法。自古便有名言:“搜索进省队,打表能AK”。在考场上,搜索常常是与正解的对拍板子(当然有时搜索就是正解),且一般搜索都会有20~30分。而想要写好搜索,剪枝必不可少。

what is 剪枝?

常用的搜索有Dfs和Bfs。Bfs的剪枝通常就是判重,因为Bfs寻找的是步数最少,重复的话必定不会在之前的情况前产生最优解。深搜,它的进程近似一颗树(通常叫Dfs               树),而剪枝就是一种生动的比喻:把不会产生答案的,或不必要的枝条“剪掉”。剪枝的关键就在于剪枝的判断:什么枝该剪,什么枝不该剪。

剪枝的原则?

正确性,准确性,高效性。

常用的剪枝有:可行性剪枝、最优性剪枝、记忆化搜索。

1.可行性剪枝。

如果当前条件不合法就不再继续搜索,直接return。这是非常好理解的剪枝,搜索初学者都能轻松地掌握,而且也很好想。一般的搜索都会加上。

一般格式:

dfs(int x)
{
if(x>n)return;
if(!check1(x))return;
....
return;
}
2.最优性剪枝。

           如果当前条件所创造出的答案必定比之前的答案大,那么剩下的搜索就毫无必要,甚至可以剪掉。我们利用某个函数估计出此时条件下答案的‘下界’,将它与                          已经推出的答案相比,如果不比当前答案小,就可以剪掉。

   一般格式:

long long ans=987474477434487ll;
... Dfs(int x,...)
{
	if(x... && ...){ans=....;return ...;}
	if(check2(x)>=ans)return ...;	//最优性剪枝 
	for(int i=1;...;++i)
	{
		vis[...]=1; 
		dfs(...);
		vis[...]=0;
	}
}
3.记忆化搜索。

  记忆化搜索其实很像动态规划(DP)。它的关键是:如果对于相同情况下必定答案相同,就可以把这个情况的答案值存储下来,以后再次搜索到这种情况时就可  以直接调用。

  一般格式:

long long ans=987474477434487ll;
... Dfs(int x,...)
{
	if(x... && ...){ans=....;return ...;}
	if(f[x]!=0)return ...;	//可行性剪枝 
	for(int i=1;...;++i)
	{
		vis[...]=1; 
		dfs(...);
		vis[...]=0;
		f[x]=...;
	}
}


例题1:

codevs1288 埃及分数

在古埃及,人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数。 如:2/3=1/2+1/6,但不允许2/3=1/3+1/3,因为加数中有相同的。 对 于一个分数a/b,表示方法有很多种,但是哪种最好呢? 首先,加数少的比加数多的好,其次,加数个数相同的,最小的分数越大越 好。 如: 19/45=1/3 + 1/12 + 1/180 19/45=1/3 + 1/15 + 1/45 19/45=1/3 + 1/18 + 1/30, 19/45=1/4 + 1/6 + 1/180 19/45=1/5 + 1/6 + 1/18. 最好的是最后一种,因为1/18比1/180,1/45,1/30,1/180都大。 给出a,b(0<a<b<1000),编程计算最好的表达方式。

样例输入1 Sample Input

2 3

样例输出1 Sample Output

2 6


样例输入2 Sample Input

19 45

样例输出2 Sample Output

5 6 18




这里放题解:

这道题可行性和最优性都要加,最后一个是因为要除a,是零就得剪掉。搜索顺序是按分母从小到大枚举的。因为分数个数不确定,所以要打迭代。

#include	<iostream>
#include	<cstdio>
#include	<cstdlib>
#include	<algorithm>
#define LL long long int
using namespace std;
LL a,b,depth,FLAG=1,zZ[101010],Ans[101010],Maxx=10101000;
LL gcd(LL a,LL b){return b>0?gcd(b,a%b):a;}							//辗转相除法求最大公约数 
void dfs(LL now,LL a,LL b,LL last,LL depth)
{
	if(now==depth-1)
	{
		if(a!=1)return;
		if(b<Maxx && b>last)
			{
				zZ[now+1]=b;FLAG=0;Maxx=b;
				for(LL i=1;i<=now+1;++i){Ans[i]=zZ[i];}
			}
		return;
	}
	if(a*(last+1)>=b*(depth-now) || last>Maxx || a==0)return;		//第一个是可行性剪枝,是个十字相乘式,建议移项看
	for(LL i=last+1,K=(depth-now)*b/a;i<K;++i)
	{
		LL newa=a*i-b,newb=b*i,G=gcd(newb,newa);
		newa/=G,newb/=G;zZ[now+1]=i;
		dfs(now+1,newa,newb,i,depth);zZ[now+1]=0;
	}
}
int main()
{
	scanf("%lld %lld",&a,&b);
	if(a==1){printf("%lld",b);return 0;}
	for(int i=2;FLAG;++i)dfs(0,a,b,(b/a),i);						//迭代搜索,i为深度 
	for(int i=1;Ans[i]!=0;++i)printf("%lld ",Ans[i]);
	return 0;
}




剪枝是搜索的利器,希望大家在OI路上越走越远。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值