Part.1 RAG这么火,你会用吗?
自从大模型技术走向市场以来,“幻觉”现象总是对用户造成困扰,而**RAG(Retrieval-Augmented Generation,检索增强生成)**技术正在成为解决这一难题的利器。国内众多科技大厂在实践RAG技术时都取得了阶段性的成果。
蚂蚁集团采用RAG技术,通过知识库分层构建、复杂文档处理、混合搜索策略和总结模型优化,答案获取效率提高约20%。
阿里云通过外挂知识库提供可靠知识,优化知识检索与答案生成流程,成功化解智能问答面临的幻觉、知识更新滞后、隐私数据泄露等挑战。
哔哩哔哩运用大模型升级智能客服系统,优化RAG链路和检索机制,构建全面的领域知识库,智能客服拦截率提升近30%。
字节跳动充分发挥RAG和FineTuning(微调)两种建设思路,利用大模型构建答疑机器人,实现研发基建部门答疑值班。
RAG这么厉害,很多小伙伴撸起袖子就想一气呵成地干好,但却没少碰壁,一是发现其所涵盖的技术栈特别广泛,二是实现过程中遇到技术难点后一筹莫展。难道要将AI所有的知识都学习一遍才能做好RAG吗?
其实不然,只要**《大模型应用开发:RAG实战课》**一书在手,就能轻松搞定!这本书不是简单地罗列操作过程,而是帮助读者构建整个RAG技术栈的认知体系和底层架构,这样一来,无论什么样的RAG框架和模型,读者都能从容实施,游刃有余。
Part.2 RAG的核心
RAG的核心功能,就是它可以访问一个外部知识库或文档集,从中检索与当前问题相关的片段,将这些最新或特定领域的外部信息纳入“思考过程”,然后再进行回答生成。这使得大模型在回答问题时,不必依赖于其在训练过程中“记住”的知识,以此有效降低“幻觉”。
RAG使大模型能够“查阅资料”,将静态的、受限于训练时间的语言模型转变为能够动态获取信息、实时扩展知识的智能体。对大模型的“闭卷考试”瞬间变成了“开卷考试”,这种变化对大模型应用效果提升有着巨大潜力。

RAG的核心组件包括知识嵌入、检索器和生成器。
知识嵌入(Knowledge Embedding):将外部知识库的内容读取并拆分成块,通过嵌入模型将文本或其他形式的知识转化为向量表示,使其能够在高维语义空间中进行比较。这些嵌入向量捕捉了句子或段落的深层语义信息,并被索引存储在向量数据库中,以支持高效检索。
检索器(Retriever):负责从外部知识库(向量表示的存储)中查找与用户输入相关的信息。检索器采用嵌入向量技术,通过计算语义相似性快速匹配相关文档。常用的方法包括基于稀疏向量的BM25和基于密集向量的近似最近邻检索。
生成器(Generator):利用检索器返回的相关信息生成上下文相关的答案。生成器通常基于大模型,在内容生成过程中整合检索到的外部知识,确保生成的结果既流畅又可信。
为我们揭开RAG奥秘的本书作者黄佳,是新加坡科研局首席研究员(Lead Researcher),前埃森哲新加坡公司资深顾问。入行20多年来,他参与过政府部门、银行、电商、能源等多领域大型项目,积累了极为丰富的人工智能和大数据项目实战经验。

黄佳还是一位积极的技术分享者,他曾出版**《大模型应用开发:动手做 AI Agent》《GPT 图解:大模型是怎样构建的》**等多本畅销书。他的写作风格独特,书中常以人物“咖哥”引发讨论,通过对话来讲解技术理论与实践过程,帮助读者轻松进入AI技术的世界。
如今,黄佳看到知识浪潮迅速增长,众多技术人却迷失其中,抓不住学习的重点。因此,黄佳决定编写本书,帮助技术人去除糟粕,取其精华,深入理解大模型应用开发的本质,做好大模型时代的知识检索。
了解RAG的核心知识之后,我们现在可以跟着咖哥学习,从理论到实践全盘掌握RAG技术了。
Part.3 跟着咖哥,全盘掌握RAG
RAG是大模型时代应用开发的一项伟大创新,弥补了单纯靠参数记忆知识的不足,使大模型在应对不断变化或高度专业化的问题时具有更强的适应性和灵活性。本书从RAG系统构建出发,逐步深入系统优化、评估以及复杂范式的探究,下面分为四个部分逐一详解。
1.RAG系统构建
这部分是RAG技术落地的第一步。在数据导入环节,书中详细讲解了如何读取与解析多样化的文件格式,包括TXT文本、CSV文件、网页文档、Markdown文件、PDF文件等,还有借助Unstructured工具从图片中提取文字并导入。

文本分块是影响检索精度与生成质量的关键步骤,书中介绍了按固定字符数、递归、基于格式或语义等多种分块策略。针对信息嵌入,介绍了从早期词嵌入到当下流行的OpenAI、Jina等现代嵌入模型,详细说明了如何对嵌入模型进行微调。
针对向量存储则介绍了Milvus、Weaviate等主流向量数据库,以及选型时在索引类型、检索方式、多模态支持等多方面因素的考量,为构建高效的向量存储系统提供依据。
2.RAG系统优化
优化是提升RAG系统性能的关键。在检索前处理中,介绍查询构建如何实现Text-to-SQL等复杂转换,查询翻译能将简单模糊的查询重写为精准表述,查询路由则通过逻辑路由等方式将查询导向最合适的数据源。
索引优化给出节点-句子滑动窗口检索、分层合并等实用方法,提高检索效率。检索后处理涵盖RRF、Cross-Encoder等重排手段,以及Contextual Compression Retriever等压缩技术,这些手段和技术可以对检索结果执行校正操作。

在响应生成阶段,通过改进提示词、选择适配的大模型,采用Self-RAG等优化方式,提升生成内容的质量,确保系统输出既准确又符合用户需求。
3.RAG系统评估
评估是度量RAG系统性能的重要手段。书中构建了全面的评估体系,评估数据集为测试提供基础素材,检索评估通过精确率、召回率等7种指标,度量系统从知识库中获取相关信息的能力。响应评估基于n-gram匹配、语义相似性等3类指标,判断生成回答的质量。

该部分还介绍了RAGAS、TruLens等4种评估框架,帮助读者从不同维度对RAG系统进行量化分析,清晰了解系统在准确性、相关性、可靠性等方面的表现,进而有针对性地进行改进。
4.复杂RAG范式
最后一部分是对RAG技术的前沿探索,包括以下RAG范式:
GraphRAG:整合知识图谱,提升对复杂问题的处理能力;
上下文检索:突破传统上下文限制的困境,为用户提供更贴合语境的回答;
Modular RAG:实现从固定流程到灵活架构的转变;
Agentic RAG:引入自主代理驱动机制,让系统具备更强的自主性和智能性;
Multi-Modal RAG:实现多模态检索增强生成,支持文本、图像、音频等多种信息融合。

经过这四个部分的系统化学习,读者将打下RAG的理论基础,并掌握RAG实施的方法与工具,大力提升大模型的工作效能。
如何学习大模型 AI ?
我国在AI大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着Al技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国Al产业的创新步伐。加强人才培养,优化教育体系,国际合作并进,是破解困局、推动AI发展的关键。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

2025最新大模型学习路线
明确的学习路线至关重要。它能指引新人起点、规划学习顺序、明确核心知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
对于从来没有接触过AI大模型的同学,我帮大家准备了从零基础到精通学习成长路线图以及学习规划。可以说是最科学最系统的学习路线。

针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
大模型经典PDF书籍
新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路!

配套大模型项目实战
所有视频教程所涉及的实战项目和项目源码等

博主介绍+AI项目案例集锦
MoPaaS专注于Al技术能力建设与应用场景开发,与智学优课联合孵化,培养适合未来发展需求的技术性人才和应用型领袖。


这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】

为什么要学习大模型?
2025人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

适合人群
- 在校学生:包括专科、本科、硕士和博士研究生。学生应具备扎实的编程基础和一定的数学基础,有志于深入AGI大模型行业,希望开展相关的研究和开发工作。
- IT行业从业人员:包括在职或失业者,涵盖开发、测试、运维、产品经理等职务。拥有一定的IT从业经验,至少1年以上的编程工作经验,对大模型技术感兴趣或有业务需求,希望通过课程提升自身在IT领域的竞争力。
- IT管理及技术研究领域人员:包括技术经理、技术负责人、CTO、架构师、研究员等角色。这些人员需要跟随技术发展趋势,主导技术创新,推动大模型技术在企业业务中的应用与改造。
- 传统AI从业人员:包括算法工程师、机器视觉工程师、深度学习工程师等。这些AI技术人才原先从事机器视觉、自然语言处理、推荐系统等领域工作,现需要快速补充大模型技术能力,获得大模型训练微调的实操技能,以适应新的技术发展趋势。

课程精彩瞬间
大模型核心原理与Prompt:掌握大语言模型的核心知识,了解行业应用与趋势;熟练Python编程,提升提示工程技能,为Al应用开发打下坚实基础。

RAG应用开发工程:掌握RAG应用开发全流程,理解前沿技术,提升商业化分析与优化能力,通过实战项目加深理解与应用。 
Agent应用架构进阶实践:掌握大模型Agent技术的核心原理与实践应用,能够独立完成Agent系统的设计与开发,提升多智能体协同与复杂任务处理的能力,为AI产品的创新与优化提供有力支持。
模型微调与私有化大模型:掌握大模型微调与私有化部署技能,提升模型优化与部署能力,为大模型项目落地打下坚实基础。 
顶尖师资,深耕AI大模型前沿技术
实战专家亲授,让你少走弯路

一对一学习规划,职业生涯指导
- 真实商业项目实训
- 大厂绿色直通车
人才库优秀学员参与真实商业项目实训
以商业交付标准作为学习标准,具备真实大模型项目实践操作经验可写入简历,支持项目背调 
大厂绿色直通车,冲击行业高薪岗位

文中涉及到的完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】


194

被折叠的 条评论
为什么被折叠?



