用Python绘制动态可视化图表,屌爆了

本文介绍了数据科学家如何利用Python的Plotly库创建五种非传统的可视化技术,包括动画图表、太阳图、指针图、桑基图和平行坐标图,以提升数据故事的吸引力和沟通效果。通过这些交互式图表,可以更好地展示时间序列数据、类别分解以及关键绩效指标等信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对数据科学家来说,讲故事是一个至关重要的技能。为了表达我们的思想并且说服别人,我们需要有效的沟通。而漂漂亮亮的可视化是完成这一任务的绝佳工具。

本文将介绍5种非传统的可视化技术,可让你的数据故事更漂亮和更有效。这里将使用Python的Plotly图形库,让你可以毫不费力地生成动画图表和交互式图表。

安装模块

如果你还没安装 Plotly,只需在你的终端运行以下命令即可完成安装:

pip install plotly

可视化动态图

在研究这个或那个指标的演变时,我们常涉及到时间数据。Plotly动画工具仅需一行代码就能让人观看数据随时间的变化情况,如下图所示:

在这里插入图片描述
代码如下

import plotly.express as px
from vega_datasets import data
df = data.disasters()
df = df[df.Year > 1990]
fig = px.bar(df,
             y="Entity",
             x="Deaths",
             animation_frame="Year",
             orientation='h',
             range_x=[0, df.Deaths.max()],
             color="Entity")
# improve aesthetics (size, grids etc.)
fig.update_layout(width=1000,
                  height=800,
                  xaxis_showgrid=False,
                  yaxis_showgrid=False,
                  paper_bgcolor='rgba(0,0,0,0)',
                  plot_bgcolor='rgba(0,0,0,0)',
                  title_text='Evolution of Natural Disasters',
                  showlegend=False)
fig.update_xaxes(title_text='Number of Deaths')
fig.update_yaxes(title_text='')
fig.show()

只要你有一个时间变量来过滤,那么几乎任何图表都可以做成动画。下面是一个制作散点图动画的例子:

在这里插入图片描述

import plotly.express as px
df = px.data.gapminder()
fig = px.scatter(
    df,
    x="gdpPercap",
    y="lifeExp",
    animation_frame="year",
    size="pop",
    color="continent",
    hover_name="country",
    log_x=True,
    size_max=55,
    range_x=[100, 100000],
    range_y=[25, 90],

    #   color_continuous_scale=px.colors.sequential.Emrld
)
fig.update_layout(width=1000,
                  height=800,
                  xaxis_showgrid=False,
                  yaxis_showgrid=False,
                  paper_bgcolor='rgba(0,0,0,0)',
                  plot_bgcolor='rgba(0,0,0,0)')

太阳图

太阳图(sunburst chart)是一种可视化group by语句的好方法。如果你想通过一个或多个类别变量来分解一个给定的量,那就用太阳图吧。

假设我们想根据性别和每天的时间分解平均小费数据,那么相较于表格,这种双重group by语句可以通过可视化来更有效地展示。

在这里插入图片描述
这个图表是交互式的,让你可以自己点击并探索各个类别。你只需要定义你的所有类别,并声明它们之间的层次结构(见以下代码中的parents参数)并分配对应的值即可,这在我们案例中即为group by语句的输出。

import plotly.graph_objects as go
import plotly.express as px
import numpy as np
import pandas as pd
df = px.data.tips()
fig = go.Figure(go.Sunburst(
    labels=["Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch '],
    parents=["", "", "Female", "Female", 'Male', 'Male'],
    values=np.append(
        df.groupby('sex').tip.mean().values,
        df.groupby(['sex', 'time']).tip.mean().values),
    marker=dict(colors=px.colors.sequential.Emrld)),
                layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',
                                 plot_bgcolor='rgba(0,0,0,0)'))

fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),
                  title_text='Tipping Habbits Per Gender, Time and Day')
fig.show()

现在我们向这个层次结构再添加一层:

在这里插入图片描述
为此,我们再添加另一个涉及三个类别变量的group by语句的值

import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import numpy as np
df = px.data.tips()
fig = go.Figure(go.Sunburst(labels=[
    "Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch ', 'Fri', 'Sat',
    'Sun', 'Thu', 'Fri ', 'Thu ', 'Fri  ', 'Sat  ', 'Sun  ', 'Fri   ', 'Thu   '
],
                            parents=[
                                "", "", "Female", "Female", 'Male', 'Male',
                                'Dinner', 'Dinner', 'Dinner', 'Dinner',
                                'Lunch', 'Lunch', 'Dinner ', 'Dinner ',
                                'Dinner ', 'Lunch ', 'Lunch '
                            ],
                            values=np.append(
                                np.append(
                                    df.groupby('sex').tip.mean().values,
                                    df.groupby(['sex',
                                                'time']).tip.mean().values,
                                ),
                                df.groupby(['sex', 'time',
                                            'day']).tip.mean().values),
                            marker=dict(colors=px.colors.sequential.Emrld)),
                layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',
                                 plot_bgcolor='rgba(0,0,0,0)'))
fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),
                  title_text='Tipping Habbits Per Gender, Time and Day')

fig.show()

指针图

指针图仅仅是为了好看。在报告 KPI 等成功指标并展示其与你的目标的距离时,可以使用这种图表。

在这里插入图片描述

import plotly.graph_objects as go
fig = go.Figure(go.Indicator(
    domain = {'x': [0, 1], 'y': [0, 1]},
    value = 4.3,
    mode = "gauge+number+delta",
    title = {'text': "Success Metric"},
    delta = {'reference': 3.9},
    gauge = {'bar': {'color': "lightgreen"},
        'axis': {'range': [None, 5]},
             'steps' : [
                 {'range': [0, 2.5], 'color': "lightgray"},
                 {'range': [2.5, 4], 'color': "gray"}],
          }))
fig.show()

桑基图

另一种探索类别变量之间关系的方法是以下这种平行坐标图。你可以随时拖放、高亮和浏览值,非常适合演示时使用。

在这里插入图片描述
代码如下

import plotly.express as px
from vega_datasets import data
import pandas as pd
df = data.movies()
df = df.dropna()
df['Genre_id'] = df.Major_Genre.factorize()[0]
fig = px.parallel_categories(
    df,
    dimensions=['MPAA_Rating', 'Creative_Type', 'Major_Genre'],
    color="Genre_id",
    color_continuous_scale=px.colors.sequential.Emrld,
)
fig.show()

平行坐标图

平行坐标图是上面的图表的衍生版本。这里,每一根弦都代表单个观察。这是一种可用于识别离群值(远离其它数据的单条线)、聚类、趋势和冗余变量(比如如果两个变量在每个观察上的值都相近,那么它们将位于同一水平线上,表示存在冗余)的好用工具。

在这里插入图片描述
代码如下

import plotly.express as px
from vega_datasets import data
import pandas as pd
df = data.movies()
df = df.dropna()
df['Genre_id'] = df.Major_Genre.factorize()[0]
fig = px.parallel_coordinates(
    df,
    dimensions=[
        'IMDB_Rating', 'IMDB_Votes', 'Production_Budget', 'Running_Time_min',
        'US_Gross', 'Worldwide_Gross', 'US_DVD_Sales'
    ],
    color='IMDB_Rating',
    color_continuous_scale=px.colors.sequential.Emrld)
fig.show()

职业发展

作为一个代码打工仔,对于绝大部分程序员来说,想要成为牛逼的真正挣钱程序员的路还很长,一刻都不能懈怠。

我们无法从HR角度,或者技术leader的角度来臆测哪种状态的面试更能获取面试官青睐。但通过我们积攒的大量的面试经验,大家多少可以推断一些成为有竞争力的程序员的一些必要条件。

大佬云集、资料丰富

当初我在字节认识一个非常非常资深的前辈,他到字节比我早三年,但因为各种原因级别不是很高。我当时问他,既然你对现状如此不满,为什么不想着离开寻找更好的机会呢?

他沉思了片刻跟我说,他说我现在在这里虽然待着不顺心,但是我接触到的人都是非常优秀的。我遇到问题,还可以和你们讨论讨论。我如果出去了,我要是再遇到问题,可能连一个讨论的人都没有。

我当时听听只是觉得有道理,现在再回想起来,感受非常深刻。三观、格局、能力,能够进入大公司的,这三个方面一般都不会太差。别的不说,就拿个人能力而言,我曾出国出差过几个月,有幸见识了许多各种海外名校的同事,和他们学习交流人工智能,这真的让我AI有了更深层次的认识。

除了优秀的同事之外,大公司里往往还有丰富的内部文档和资料。我当时在字节内部看到了很多优秀的文章,也有很多优秀的技术沙龙和分享。现在想起来两年下来,也没有去过几次,文章和资料看得也不算多,现在想想颇为遗憾。别的不说,就拿推荐领域而言,近些年质量不错的论文往往都来源于大公司尤其是国内的大公司,以腾讯、华为和头条为主。除了公开的论文,公司内部还有很多技术相关的资料和文档,这些真的可以说是有价无市,非常珍贵。

Python 知识手册

Linux 知识手册

爬虫查询手册

而且,这些资料不是扫描版的,里面的文字都可以直接复制,非常便于我们学习:

数据分析知识手册:

机器学习知识手册:

金融量化知识手册:

岗位内推、学习交流

我们大量需要前端岗位、python岗位、Java 岗位、Android 和 iOS 的开发岗位,工作地点:北京字节,欢迎校招社招扫描下方二维码找我内推

Python资料、技术、课程、解答、咨询也可以直接点击下面名片,添加官方客服斯琪

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值