LeetCode|3. 无重复字符的最长子串

这篇博客介绍了如何解决LeetCode上的经典问题——找到字符串中不含重复字符的最长子串的长度。通过滑动窗口算法,利用Python实现了一个高效的解决方案,能够处理包含各种字符的输入字符串。博客详细解释了算法思路,并提供了关键代码片段。

LeetCode习题答案汇总

题目:
给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。

示例 1:

输入: s = “abcabcbb”
输出: 3
解释: 因为无重复字符的最长子串是 “abc”,所以其长度为 3。
示例 2:

输入: s = “bbbbb”
输出: 1
解释: 因为无重复字符的最长子串是 “b”,所以其长度为 1。
示例 3:

输入: s = “pwwkew”
输出: 3
解释: 因为无重复字符的最长子串是 “wke”,所以其长度为 3。
请注意,你的答案必须是 子串 的长度,“pwke” 是一个子序列,不是子串。
示例 4:

输入: s = “”
输出: 0

提示:

0 <= s.length <= 5 * 104
s 由英文字母、数字、符号和空格组成

分析:
想象窗口移动就好了,并记录长度

代码:

class Solution:
    def lengthOfLongestSubstring(self, s: str) -> int:
        if not s: return 0
        left = 0 # 左指针
        windows = set() # 窗口
        max_len = 0 # 保存最大长度
        cur_len = 0 # 当前长度
        for i in range(len(s))):
            cur_len += 1
            while s[i] in windows:
                windows.remove(s[left])
                left += 1
                cur_len -= 1
            if cur_len > max_len:
                max_len = cur_len
            windows.add(s[i])
        return max_len
### 解法分析 解决“无重复字符长子”问题的高效方法是使用**滑动窗口**技巧。该方法通过维护一个窗口,窗口内始终不包含重复字符。窗口的左右边界分别由两个指针控制,通过哈希表或数组记录字符近出现的位置,从而判断是否需要移动左指针以保持窗口的有效性。 #### 1. 滑动窗口法 滑动窗口法的时间复杂度为 $O(n)$,其中 $n$ 是字符的长度。它通过单次遍历字符,动态调整窗口的左右边界,从而找出无重复字符的子。 ```cpp class Solution { public: int lengthOfLongestSubstring(string s) { vector<int> charIndex(128, -1); // 用于记录每个字符近出现的位置 int maxLen = 0; int start = 0; // 窗口的起始位置 for (int end = 0; end < s.size(); end++) { char currentChar = s[end]; if (charIndex[currentChar] >= start) { // 如果当前字符已经出现在窗口内,则更新窗口的起始位置 start = charIndex[currentChar] + 1; } charIndex[currentChar] = end; // 更新字符的位置 maxLen = max(maxLen, end - start + 1); // 计算当前窗口长度 } return maxLen; } }; ``` #### 2. 使用哈希表 除了使用固定大小的数组记录字符位置,也可以使用哈希表(`unordered_map`)来动态存储字符的位置信息。 ```cpp class Solution { public: int lengthOfLongestSubstring(string s) { unordered_map<char, int> charMap; int maxLen = 0; int start = 0; for (int end = 0; end < s.size(); end++) { if (charMap.count(s[end])) { // 如果字符已经出现过,并且其位置在窗口内,则更新窗口起始位置 start = max(start, charMap[s[end]] + 1); } charMap[s[end]] = end; // 更新字符的位置 maxLen = max(maxLen, end - start + 1); // 更新大长度 } return maxLen; } }; ``` #### 3. 使用布尔数组 另一种方法是使用布尔数组记录字符是否已经在当前窗口中出现,这种方法适用于字符集较小的情况(如 ASCII)。 ```cpp class Solution { public: int lengthOfLongestSubstring(string s) { bool used[128] = {false}; int maxLen = 0; int left = 0, right = 0; while (right < s.size()) { if (used[s[right]]) { // 如果当前字符已存在,则移动左指针并更新数组 used[s[left++]] = false; } else { used[s[right++]] = true; maxLen = max(maxLen, right - left); } } return maxLen; } }; ``` ### 总结 - **滑动窗口法**是优解法,时间复杂度为 $O(n)$,空间复杂度为 $O(m)$($m$ 为字符集大小)。 - **哈希表**方法灵活性更强,适用于字符集较大的情况。 - **布尔数组**方法适用于字符集较小的情况,实现简单且效率较高。 这些方法都可以通过 LeetCode 测试用例,并且在性能上表现良好。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiao黄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值