Python编程语言拥有诸多用于网络应用开发、图形用户界面、数据分析、数据可视化等工作的框架和特性。Python可能不是网络应用开发的理想选择,但是正被很多机构广泛用于评估大型数据集(dataset)、数据可视化、进行数据分析或制作原型。
在数据科学领域,Python编程语言正不断获得用户的亲睐,而作为网络开发语言,Python显得有点过时了。本文就是要对这两种截然不同的Python使用方式,进行详细的对比,并且帮助大家明白一点:如果要利用Python做数据科学工作,并没有必要了解它用于网络开发的部分。
面向数据科学的Python
从顶级金融机构到最小的大数据创业公司,各行各业、各种规模的机构都在使用Python编程语言支撑业务运作。Python作为数据科学编程语言,不仅受顶级大数据公司欢迎,还有众多技术创业企业拥泵。它还位列2015推荐学习的前10种编程语言。
世上只有两种编程语言:一种是总是被人骂的,一种是从来没人用的。 – Bjarne Stroustrup,C++语言发明者
Python属于前一种,而且日益被用于数学计算、机器学习和多种数据科学应用。除了性能依赖性强和底层的业务外,它能够做其他任何事情。利用Python编程语言的最好选择,就是做数据分析和统计计算。学习面向网络开发的Python,需要程序员掌握像Django这样的多种网络框架协助建设网站;但是学习面向数据科学的Python,则要求数据科学家学习如何使用正则表达式和科学计算库,并掌握数据可视化的概念。由于目的、方向不同,那些不了解Python网络开发的程序员,能很轻松地走上利用Python编程语言做数据科学工作的道路。
Python是一个有着23年历史的强大动态编程语言,语言表现力很强。程序员编码完成后,不需要编译器即可运行程序。面向网络开发的Python支持多种编程范式,包括结构化编程(structured programming)、函数式编程(functional programming)和面向对象编程(object-oriented programming, OOP)。Python代码可以很容易地嵌入到许多拥有编程接口的网络应用中。但是,Python更是开发学术研究和科学计算程序的绝佳选择,这些程序要求运行快速、数学计算精确。
而面向网络编程的Python,则要求程序员学习多种网络开发框架,这个学习难度比较大,因为现有Python网络开发框架的文档不太容易理解。当然,不容否认的是,要想利用Python开发一个动态网站或网络应用,学习网络框架是必需的。
Python网络开发框架
目前,Python社区已经有多种免费的网络应用开发框架,比如:
Django
Django是帮助完美主义者按时完成工作的Python网络开发框架(译者注:原文是Django is the python web development framework for perfectionists with deadlines。这也是Django官网上对该框架的描述)。使用Django进行网络开发,最适合的场景是开发那些依靠数据库驱动,同时也具备类似自动化后台管理界面和模板系统等炫酷功能的应用。
对于不需要太多功能的网络开发项目来说,Django可能是大材小用,主要是它的文件系统容易让人搞混,而且文件目录结构要求严格。使用Django进行Python网络开发的公司有纽约时报、Instagram和Pinterest(译者注:Pinterest联合创始人Paul Sciarra在Quora上的回答提到了使用Django,Quora地址)。
Flask
Flask是针对初学者的框架,它简单,轻量,初学者很快就可以上手开发单页网络应用。这个框架并不支持验证,没有数据抽象层和其他许多框架所包括的组件。它不是一个全栈开发框架,也只用于小型网站的开发。(译者注:其实Pinterest也使用了Flask,只是没用在整站开发上,而是用来开发API,具体见链接。)
CherryPy
CherryPy框架强调要符合Python语言规范,做到程序员像进行面向对象编程一样开发网络应用。它还是诸如TurboGears和Web2py等流行全栈框架的基础模板引擎。
还有很多其他框架,包括Pyramid、Bottle和Pylons等,但是无论Python开发者使用哪一种框架,他/她都要花精力仔细地研究教程和文档。
为什么使用Python进行网络开发不现实?
Python作为网络开发语言,很可能是一个不太现实的选择:
-
面向网络开发的Python需要非标准化、昂贵的主机服务,尤其是程序员使用流行的Python网络框架开发网站时。由于利用PHP进行网络编程如此的便捷,大部分的用户没有兴趣在Python上投入太多的精力。
-
面向网络开发的Python与诸如PHP、Java或Ruby on Rails等语言不同,不是一个经常需要的技能。但是面向数据科学的Python却越来越受欢迎,而且由于它更多地被用于机器学习和其他数据科学程序,Python更是招聘数据科学家的公司所最看重的技能。
-
面向网络开发的Python已经经历了较长的发展,但是它的学习曲线并没有像PHP这样的网络编程语言那么高。
为什么将Python用于数据科学是最好的选择?
Python编程是驱动大数据、金融、统计和数字运算的核心科技,而它的语法却像英语一样易懂。近来,由于拥有多个针对机器学习、自然语言处理、数据视觉化、数据探索、数据分析和数据挖掘的插件,丰富的Python数据科学生态体系得到了较大的发展,甚至有将数据科学社区Python化的趋势。
今天,面向数据科学的Python已经具备了清洗、转换和处理大数据的所有工具。对于数据分析师岗位来说,掌握Python也是最受欢迎的技能。一名具备Python编程能力的数据科学家,可以在纽约挣到平均年薪14万美元的工资。
为什么数据科学家喜欢使用Python语言?

数据科学家喜欢那些能够快速输出原型,帮助他们轻松地记录下自己的想法和模型的编程环境。他们喜欢通过分析巨量的数据集,得出结论,完成工作。而Python编程语言则是开发数据科学应用的多面手,因为它能帮助数据科学家,以最短最优的时间进行编码、调试、运行并获取结果,从而高效地完成工作。
一名技术娴熟的企业数据科学家的真正价值,在于利用多种数据视觉化手段,向公司的不同利益相关者有效地传递数据模式和预测。否则,数据科学工作就是一场零和游戏。Python以其优良特性,符合高强度科学计算的几乎所有方面要求,这使得它成为在不同的数据科学应用之间进行编程的绝佳选择,原因很简单:开发人员仅用一种语言就可以完成开发和分析工作。面向数据科学的Python将企业业务的不同部分连接在一起,提供了一个数据分享和处理的直接媒介。
-
Python遵循统一的设计哲学,注重可用性、可读性,对于数据科学的学习曲线也较低。
-
Python有很高的可扩展性,且与Matlab、Stata等语言相比,运行更加快速。
-
另外,Python生态系统中还在涌现出更多的数据视觉化库,以及炫酷的应用编程结构,目的是使用图形更好地展现数据分析的结果。Python社区有着诸如Sci-Kit learn、NumPy、Pandas、Statsmodel和SciPy等许多优秀的数据分析库。这些库的数量还在不断增长。

**
**
面向数据科学中数字处理与科学计算的Python编程
数据分析与Python编程语言十分契合。如果你决定要通过Python语言学习数据科学,那么你应该考虑的下一个问题,就是Python库中有哪些是可以完成大部分的数据分析工作?接下来,我们给大家介绍全球的企业数据科学家都在使用的Python数据分析库。
NumPy
Numpy是使用Python开发的高级(high level)工具的基础。这个库不能用于高级数据分析,但是深入理解Numpy中面向数组的计算,可以帮助数据科学家有效使用Pandas库。
SciPy
SciPy主要用于科学计算,拥有许多不同的模块,可用于特殊函数、图像处理、插值法(interpolation)、线性代数、常微分方程(ODE)求解器以及其他多种用途。这个库还可以与NumPy数组一起使用,实现许多高效的数学运算。
Pandas
Pandas是用于数据再加工最好的库,因为它使得处理遗失的数据、自动数据对齐(data alignment)变得更加简单,它还支持处理从不同的数据源收集而来的索引数据。
SciKit 这个流行的机器学习库拥有多种回归、分类和聚类算法,还支持gradient boosting、向量机、朴素贝叶斯模型和逻辑回归。这个库还被设计成能够与NumPy和SciPy进行交互。
Matplotlib
这是一个二维绘图库,有着交互性很强的特性,生成的图标可以放大、推移,并且能够用于发行刊物印刷出版。而且,还支持多平台的交互环境。
Matplotlib、NumPy和SciPy是科学计算的基础。还有许多其他的Python库,诸如用于网络挖掘的Pattern,用于自然语言处理的NLTK,用于深度学习的Theano,用于爬取网络的Scrappy,IPython,Statsmodels,Mlpy等。对于初学Python数据科学的人,他们需要很好地掌握上面提到的优秀数据分析库。
这里给大家分享一份Python全套学习资料,包括学习路线、软件、源码、视频、面试题等等,都是我自己学习时整理的,希望可以对正在学习或者想要学习Python的朋友有帮助!
优快云大礼包:全网最全《全套Python学习资料》免费分享🎁
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

1️⃣零基础入门
① 学习路线
对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

② 路线对应学习视频
还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
③练习题
每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!

因篇幅有限,仅展示部分资料
2️⃣国内外Python书籍、文档
① 文档和书籍资料

3️⃣Python工具包+项目源码合集
①Python工具包
学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!

②Python实战案例
光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!

③Python小游戏源码
如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!

4️⃣Python面试题
我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。


5️⃣Python兼职渠道
而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。


上述所有资料 ⚡️ ,朋友们如果有需要 📦《全套Python学习资料》的,可以扫描下方二维码免费领取 🆓
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

Python:网络开发与数据科学的双重角色
文章探讨了Python在数据科学领域的广泛应用,与网络开发的对比,指出面向数据科学的Python因其易用性和丰富的库而受欢迎,如Numpy、SciPy、Pandas等。同时提到了Django、Flask和CherryPy等网络开发框架。

被折叠的 条评论
为什么被折叠?



