特征锦囊:特征无量纲化的常见操作方法

本文介绍三种常见的无量纲化方法,包括标准化、区间缩放及归一化,使用sklearn库实现,适用于不同单位或量级指标的比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今日锦囊

特征无量纲化的常见操作方法

第一招,从简单的特征量纲处理开始,这里介绍了3种无量纲化操作的方法,同时也附上相关的包以及调用方法,欢迎补充!

无量纲化:即nondimensionalize 或者dimensionless,是指通过一个合适的变量替代,将一个涉及物理量的方程的部分或全部的单位移除,以求简化实验或者计算的目的。——百度百科

进行进一步解释,比如有两个字段,一个是车行走的公里数,另一个是人跑步的距离,他们之间的单位其实差异还是挺大的,其实两者之间无法进行比较的,但是我们可以进行去量纲,把他们的变量值进行缩放,都统一到某一个区间内,比如0-1,便于不同单位或者量级之间的指标可以进行比较or加权!

下面的是sklearn里的一些无量纲化的常见操作方法。

from sklearn.datasets import load_iris
#导入IRIS数据集
iris = load_iris()

#标准化,返回值为标准化后的数据
from sklearn.preprocessing import StandardScaler
StandardScaler().fit_transform(iris.data)

#区间缩放,返回值为缩放到[0, 1]区间的数据
from sklearn.preprocessing import MinMaxScaler
MinMaxScaler().fit_transform(iris.data)

#归一化,返回值为归一化后的数据
from sklearn.preprocessing import Normalizer
Normalizer().fit_transform(iris.data)

通过上述的方法调用,可以达到我们进行去量纲的目的,你学会了吗?

原创不易,如果觉得这种学习方式有用,希望可以帮忙随手转发or点下“在看”,这是对我的极大鼓励!阿里嘎多!????

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值