1. 描述性统计分析
使用自带的summary()函数
> myvars <- c("mpg","hp","wt")
> summary(mtcars[myvars])
mpg hp wt
Min. :10.40 Min. : 52.0 Min. :1.513
1st Qu.:15.43 1st Qu.: 96.5 1st Qu.:2.581
Median :19.20 Median :123.0 Median :3.325
Mean :20.09 Mean :146.7 Mean :3.217
3rd Qu.:22.80 3rd Qu.:180.0 3rd Qu.:3.610
Max. :33.90 Max. :335.0 Max. :5.424
使用apply()或sapply()函数计算所选择的任意描述性统计量,函数形式为:
sapply(x, FUN, options)
这里插入的典型函数有mean()、sd()、var()、min()、max()、median()、length()、range()和quantile()。函数fivenum()可返回图基五数。
基础安装并没有封装偏度和峰度的计算函数,这里手撸一个。
> mystats <- function(x, na.omit = FALSE){
+ if (na.omit)
+ x <- x[!is.na(x)]
+ m <- mean(x)
+ n <- length(x)
+ s <- sd(x)
+ skew <- sum((x-m)^3/s^3)/n
+ kurt <- sum((x-m)^4/s^4)/n - 3
+ return(c(n=n, mean=m, stdev=s, skew=skew,kurtosis=kurt))
+ }
>
> myvars <- c("mpg","hp","wt")
> sapply(mtcars[myvars], mystats)
mpg hp wt
n 32.000000 32.0000000 32.00000000
mean 20.090625 146.6875000 3.21725000
stdev 6.026948 68.5628685 0.97845744
skew 0.610655 0.