HDU 5795 A Simple Nim【博弈】

本文介绍了一个名为ASimpleNim的游戏问题,探讨了两个玩家轮流从多堆糖果中取糖果的游戏策略。通过分析发现特定条件下糖果堆的SG值规律,并给出了计算获胜方的算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A Simple Nim

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1132    Accepted Submission(s): 638


Problem Description
Two players take turns picking candies from n heaps,the player who picks the last one will win the game.On each turn they can pick any number of candies which come from the same heap(picking no candy is not allowed).To make the game more interesting,players can separate one heap into three smaller heaps(no empty heaps)instead of the picking operation.Please find out which player will win the game if each of them never make mistakes.
 

Input
Intput contains multiple test cases. The first line is an integer  1T100 , the number of test cases. Each case begins with an integer n, indicating the number of the heaps, the next line contains N integers  s[0],s[1],....,s[n1] , representing heaps with  s[0],s[1],...,s[n1]  objects respectively. (1n106,1s[i]109)
 

Output
For each test case,output a line whick contains either"First player wins."or"Second player wins".
 

Sample Input
  
2 2 4 4 3 1 2 4
 

Sample Output
  
Second player wins. First player wins.
 

Author
UESTC
 

Source
 

解题:
    先小数据打表求sg值,可以发现sg值的规律。当i%8==7时,其sg值为i+1,当i%8==0时,其sg值为i-1(sg[0]=0)。一个状态的sg值,是其后继状态sg值中未出现过最小整数,三堆的sg值是三堆石子数量sg值的异或。



#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<algorithm>
using namespace std;
#define ll long long
#define ms(a,b)  memset(a,b,sizeof(a))
const int M=1e3+10;
const int inf=0x3f3f3f3f;
const int mod=1e9+7;
int i,j,k,n,m;
int sg[100];
int vis[100];
void solve()
{
    int tmp;
    sg[0]=0;
    for(int i=1;i<40;i++){
        ms(vis,0);
        for(int j=0;j<i;j++){
            vis[sg[j]]=1;
            for(int k=1;k<i;k++)
            for(int m=1;m<i;m++){
                int u=i-k-m;
                if(u>0){
                    tmp=sg[u]^sg[k]^sg[m];
                    vis[tmp]=1;
                }
                else break;
            }
        }
        for(int x=0;;x++){
            if(!vis[x]){
                sg[i]=x;
                printf("%d\n",x);
                break;
            }
        }
    }
}

int main()
{
    //solve();
    int t;
    scanf("%d",&t);
    while(t--){
        scanf("%d",&n);
        int ans=0;
        for(int i=1;i<=n;i++){
            int a;
            scanf("%d",&a);
            if(a%8==0)a--;
            else if(a%8==7)a++;
            ans^=a;
        }
        if(!ans)printf("Second player wins.\n");
        else printf("First player wins.\n");
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值