经典语音降噪方法-谱减法

一、引言

  谱减法作为语音降噪处理算法中的经典算法,因其运行和处理快,而被广泛应用。

二、简单谱减法

  2.1 谱减法使用场景

    1) 噪声为是平稳的(也即在整个时间范围内,噪声的均值和方差基本保持不变);
    2) 噪声为加性噪声

  2.2 简单谱减法基本思想

    默认混合信号(含噪信号)前几帧仅包含环境噪声,并利用混合信号的前几帧的平均幅度谱或者能量谱作为估计到一帧噪声的幅度谱或者能量谱。最后利用混合信号(含噪信号)的幅度谱或者能量谱与估计到的幅度谱与能量谱相减,得到估计到的干净信号的幅度谱或者能量谱。

  2.3 简单谱减法数学模型

  接收到的含噪语音信号时域数学模型如下: y ( n ) = x ( n ) + n ( n ) y(n)=x(n)+n(n) y(n)=x(n)+n(n)  其中, y ( n ) y(n) y(n)表示混合信号(含噪信号),也即待降噪信号 x ( n ) x(n) x(n)表示干净信的语音信号 n ( n ) n(n) n(n)表示噪声信号。其频域表达式如下所示: Y ( ω ) = X ( ω ) + N ( ω ) Y(\omega)=X(\omega)+N(\omega) Y(ω)=X(ω)+N(ω)   出增强后语音信号出现幅度谱负数的情况用0替换 ∣ X ^ ( ω ) ∣ = { ( ∣ Y ( ω ) ∣ γ − ∣ N ^ ( ω ) ∣ ∣ ∣ 1 γ ∣ Y ( ω ) ∣ γ − ∣ N ^ ( ω ) ∣ ∣ γ ≥ 0 0  else  |\hat{X}(\omega)|=\left\{\begin{array}{cc} \left(|Y(\omega)|^{\gamma}-\left.|\hat{N}(\omega)|^{\mid}\right|^{\frac{1}{\gamma}}\right. & |Y(\omega)|^{\gamma}-|\hat{N}(\omega)|^{\mid \gamma} \geq 0 \\ 0 & \text { else } \end{array}\right. X^(ω)=

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值