leetcode414. Third Maximum Number

本文介绍了一道编程题的解决方法,题目要求从整数数组中找出第三大的数,若不存在则返回最大数。通过两个不同的解决方案展示了如何高效地解决问题,并讨论了代码实现细节。

题目

easy程度题

Given a non-empty array of integers, return the third maximum number in this array. If it does not exist, return the maximum number. The time complexity must be in O(n).

Example 1:

Input: [3, 2, 1]

Output: 1

Explanation: The third maximum is 1.

Example 2:

Input: [1, 2]

Output: 2

Explanation: The third maximum does not exist, so the maximum (2) is returned instead.

Example 3:

Input: [2, 2, 3, 1]

Output: 1

Explanation: Note that the third maximum here means the third maximum distinct number.
Both numbers with value 2 are both considered as second maximum.
第一次做题,一个easy的题都写了一个多小时- -!
我的代码,先来个选择排序,然后,if,if,if- -
class Solution
{
public:
    int thirdMax(vector<int>& a)
    {
        int n=a.size();
        if(n==1)
            return a[0];
        
        if(n==2)
            return a[0]>=a[1]?a[0]:a[1];
        
        bool sorted= false;
        for(int size=n;(!sorted)&&(size>1);size--)
    	{
    		sorted=true;
    		int indexOfMax=0;
    		for(int i=1;i<size;i++)
    			if(a[indexOfMax]<=a[i]) indexOfMax=i;
    			else  sorted=false;
    		exchange(a[indexOfMax],a[size-1]);
    	}
        
        int p=0,j,result;
        for(j=n-1;j>0;j--)
        {
            
            if(a[j]>a[j-1]) ++p;
            if(p==2)
            {
                result=a[j-1];
                break;
            }
            
            if(j==1&&p==1)
            {   
                result=a[n-1];
                break;
            }
            
            if(j==1&&p==0)
            {
                result=a[n-1];
                break;
            }
        }
        
        return result;
    }
    
    void exchange(int &a, int &b)
    {
    	int temp=a;
    	a=b;
    	b=temp;
    }
};


高手写的代码
public class Solution  
{  
    public int thirdMax(int[] nums)  
    {  
        long first, second, third;  
        first = second = third = Long.MIN_VALUE;  
        for (int num : nums)  
        {  
            if (num == first || num == second || num == third) continue;  
            if (num > first)  
            {  
                third = second;  
                second = first;  
                first = num;  
            }  
            else if (num > second)  
            {  
                third = second;  
                second = num;  
            }  
            else if (num > third) third = num;  
        }  
  
        return (third == Long.MIN_VALUE) ? (int)first : (int)third;  
    }  
}  

哎,还是太年轻了!
Yousef has an array a of size n . He wants to partition the array into one or more contiguous segments such that each element ai belongs to exactly one segment. A partition is called cool if, for every segment bj , all elements in bj also appear in bj+1 (if it exists). That is, every element in a segment must also be present in the segment following it. For example, if a=[1,2,2,3,1,5] , a cool partition Yousef can make is b1=[1,2] , b2=[2,3,1,5] . This is a cool partition because every element in b1 (which are 1 and 2 ) also appears in b2 . In contrast, b1=[1,2,2] , b2=[3,1,5] is not a cool partition, since 2 appears in b1 but not in b2 . Note that after partitioning the array, you do not change the order of the segments. Also, note that if an element appears several times in some segment bj , it only needs to appear at least once in bj+1 . Your task is to help Yousef by finding the maximum number of segments that make a cool partition. Input The first line of the input contains integer t (1≤t≤104 ) — the number of test cases. The first line of each test case contains an integer n (1≤n≤2⋅105 ) — the size of the array. The second line of each test case contains n integers a1,a2,…,an (1≤ai≤n ) — the elements of the array. It is guaranteed that the sum of n over all test cases doesn't exceed 2⋅105 . Output For each test case, print one integer — the maximum number of segments that make a cool partition. Example InputCopy 8 6 1 2 2 3 1 5 8 1 2 1 3 2 1 3 2 5 5 4 3 2 1 10 5 8 7 5 8 5 7 8 10 9 3 1 2 2 9 3 3 1 4 3 2 4 1 2 6 4 5 4 5 6 4 8 1 2 1 2 1 2 1 2 OutputCopy 2 3 1 3 1 3 3 4 Note The first test case is explained in the statement. We can partition it into b1=[1,2] , b2=[2,3,1,5] . It can be shown there is no other partition with more segments. In the second test case, we can partition the array into b1=[1,2] , b2=[1,3,2] , b3=[1,3,2] . The maximum number of segments is 3 . In the third test case, the only partition we can make is b1=[5,4,3,2,1]
最新发布
06-09
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值