频域补零上采样_关于FFT的一些细节之补零操作

本文探讨了在信号处理中补零对快速傅里叶变换(FFT)的影响,指出补零不会改变频谱轮廓,但能提高频谱分辨率,使频谱更细腻。举例说明,通过对比不同补零数量的FFT结果,展示如何通过增加采样点数来提高频率分辨率。此外,提到了频谱泄露和栅栏效应,但未深入讨论。结论强调,要提高频率分辨率,需增加观测时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在做信号处理的过程中,常遇到将信号补零后再做FFT等操作,比如频域脉冲压缩算法中,一般距离维PRT数据和脉压系数需要填零使长度相等且满足2的N次方,但是填零操作能做什么,不能做什么呢?

先说结论:补零不会改变频谱的样子(轮廓),也就是不会改变频率分辨率,但会减弱栅栏效应,提高频谱分辨率,也就是频谱采样点会增加,导致频谱采样间隔减小。注意,频谱分辨率和频率分辨率的区别。

示例中使用100Hz采样率产生两个单频点正弦信号,频率分别为11、12Hz;接着两者分别做FFT运算,以及两信号叠加后做FFT;
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

从以上各图可以看出,随着填零数量的增加,频谱的基本轮廓并未改变,只是变得更细腻(提高了频率颗粒度,即频谱分辨率),但是并不能提高频率分辨率,从图形上直观体现为主瓣尖峰宽度不变,图中11Hz和12Hz的正弦信号频谱峰值难以分辨;

从原理上分析,采样率100Hz,N=32点,则FFT频率分辨率fs/N=3.125Hz,则本例中1Hz的差异是无法分辨的,不断的填充0相当于在频域进行插值,随着填零数量的增加,32点的FFT信号频谱将不断逼近离散时间傅里叶变换(DTFT)的结果;反过来理解(将图按从下往上的顺序看),在N=32不变的情况下,填零后FFT相当于在32点信号DTFT结果中一个频域周期内进行等间隔采样而来。

提高频率分辨率需要增加观测时间(即有效数据长度),如需要分辨1Hz的频率,就需要至少1/1Hz=1s的有效观测市场;下面看看增加采样点数后频谱的变化,图中分别有11、12Hz两个频率的独立频谱和时域叠加后的频谱,可以看到在N大于128点开始,叠加信号主瓣上开始出现两个非相邻独立峰值点,N越大,区分越明显。单频信号的主瓣宽度随着N增加而变窄。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

本例种还存在一个值得讨论和深究的点:频谱泄露和栅栏效应,留个坑吧,通过记录来总领和疏通整个信号处理的思绪和流程。最后,如发现有不对的地方,诚请拍砖!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值