sharding-jdbc

本文介绍了Sharding-JDBC,作为轻量级JDBC增强框架,主要讲解了垂直分片和水平分片的概念,如何在业务场景中应用,以及它们在数据库管理和扩展性方面的优缺点。特别强调了分库分片在互联网业务中的挑战和解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


系统学习导航传送

推荐导航

一.前言

Sharding-JDBC是ShardingSphere的第一个产品,也是ShardingSphere的前身。 它定位为轻量级Java框架,在Java的JDBC层提供的额外服务。它使用客户端直连数据库,以jar包形式提供服务,无需额外部署和依赖,可理解为增强版的JDBC驱动,完全兼容JDBC和各种ORM框架。

  • 适用于任何基于Java的ORM框架,如:JPA, Hibernate, Mybatis, Spring JDBC Template或直接使用JDBC。
  • 基于任何第三方的数据库连接池,如:DBCP, C3P0, BoneCP, Druid, HikariCP等。
  • 支持任意实现JDBC规范的数据库。目前支持MySQL,Oracle,SQLServer和PostgreSQL。

二.相关概念

1.垂直分片

按照业务拆分的方式称为垂直分片,又称为纵向拆分,它的核心理念是专库专用。 在拆分之前,一个数据库由多个数据表构成,每个表对应着不同的业务。而拆分之后,则是按照业务将表进行归类,分布到不同的数据库中,从而将压力分散至不同的数据库。 下图展示了根据业务需要,将用户表和订单表垂直分片到不同的数据库的方案。
在这里插入图片描述
垂直分片往往需要对架构和设计进行调整。通常来讲,是来不及应对互联网业务需求快速变化的;而且,它也并无法真正的解决单点瓶颈。 垂直拆分可以缓解数据量和访问量带来的问题,但无法根治。如果垂直拆分之后,表中的数据量依然超过单节点所能承载的阈值,则需要水平分片来进一步处理。

2.水平分片

水平分片又称为横向拆分。 相对于垂直分片,它不再将数据根据业务逻辑分类,而是通过某个字段(或某几个字段),根据某种规则将数据分散至多个库或表中,每个分片仅包含数据的一部分。 例如:根据主键分片,偶数主键的记录放入0库(或表),奇数主键的记录放入1库(或表),如下图所示。
在这里插入图片描述
水平分片从理论上突破了单机数据量处理的瓶颈,并且扩展相对自由,是分库分表的标准解决方案。

  • 分库带来问题:
    • 1.对数据库的操作变得异常繁重
    • 2.单表操作变多表(例如:分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理)
    • 3.跨库事务也是分布式的数据库集群要面对的棘手事情

结束

系统学习导航传送

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值