矩形面积并
线段树经典题目
这种题提供了一个新的思路,线段树的标记不一定需要下传。
就如同这个题我用biao这个域存了线段树的某个节点当前被多少线段覆盖,但是这个biao是不下传的。
然后这个题运用了扫描线的思想,把面积按照纵坐标分割。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<vector>
using namespace std;
int s_tot,tmp_tail,tail,tot,n;
double ans=0;
struct rec
{
int l,r,biao,lch,rch;
double sum,da;
}tree[20100];
struct rec2
{
double y,x1,x2;
int biao;
}segment[20100];
double tmp_q[20100],q[20100];
int cmp(rec2 x,rec2 y) {return x.y<y.y;}
void clear()
{
memset(tree,0,sizeof(tree));
memset(segment,0,sizeof(tree));
memset(q,0,sizeof(q));
memset(tmp_q,0,sizeof(q));
s_tot=0;
tmp_tail=0;
tail=0;
tot=0;
ans=0;
}
void maketree(int l,int r)
{
int now=++tot;
tree[now].l=l,tree[now].r=r;
if (l==r)
{
tree[now].da=q[tree[now].l+1]-q[tree[now].l];
return ;
}
int mid=(l+r)>>1;
tree[now].lch=tot+1;maketree(l,mid);
tree[now].rch=tot+1;maketree(mid+1,r);
tree[now].da=tree[tree[now].lch].da+tree[tree[now].rch].da;
}
void Input()
{
double x1,x2,y1,y2;
for (int i=1;i<=n;i++)
{
scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
s_tot++;
segment[s_tot].y=y1;
segment[s_tot].x1=x1;
segment[s_tot].x2=x2;
segment[s_tot].biao=1;
s_tot++;
segment[s_tot].y=y2;
segment[s_tot].x1=x1;
segment[s_tot].x2=x2;
segment[s_tot].biao=-1;
tmp_q[++tmp_tail]=x1;
tmp_q[++tmp_tail]=x2;
}
sort(tmp_q+1,tmp_q+tmp_tail+1);
sort(segment+1,segment+s_tot+1,cmp);
tmp_q[0]=300000;
for (int i=1;i<=s_tot;i++)
if (tmp_q[i]!=tmp_q[i-1])
q[++tail]=tmp_q[i];
maketree(1,tail-1);
}
void change(int x,int l,int r,int w)
{
if (tree[x].l>=l&&tree[x].r<=r)
{
tree[x].biao+=w;
if (tree[x].biao!=0) tree[x].sum=tree[x].da;
else
{
if (tree[x].l==tree[x].r) tree[x].sum=0;
else tree[x].sum=tree[tree[x].lch].sum+tree[tree[x].rch].sum;
}
return;
}
int mid=(tree[x].l+tree[x].r)>>1;
if (l<=mid) change(tree[x].lch,l,r,w);
if (r>mid) change(tree[x].rch,l,r,w);
if (tree[x].biao!=0) tree[x].sum=tree[x].da;
else
{
if (tree[x].l==tree[x].r) tree[x].sum=0;
else tree[x].sum=tree[tree[x].lch].sum+tree[tree[x].rch].sum;
}
}
void work()
{
int l,r;
segment[0].y=200100;
for (int i=1;i<=s_tot;i++)
{
if (segment[i].y!=segment[i-1].y)
ans+=(segment[i].y-segment[i-1].y)*tree[1].sum;
l=lower_bound(q+1,q+tail+1,segment[i].x1)-q;
r=lower_bound(q+1,q+tail+1,segment[i].x2)-q;
change(1,l,r-1,segment[i].biao);
}
printf("Total explored area: %.2f\n\n",ans);
}
int main()
{
freopen("poj1151.in","r",stdin);
freopen("poj1151.out","w",stdout);
int ci=0;
while (scanf("%d",&n)&&n!=0)
{
ci++;
printf("Test case #%d\n",ci);
clear();
Input();
work();
}
return 0;
}
奇怪的是交c++会RE但是交G++就能过,目测是中间用的lower_bound的问题?