全同态加密的硬件加速:让机器学习更懂隐私保护

PrimiHub一款由密码学专家团队打造的开源隐私计算平台,专注于分享数据安全、密码学、联邦学习、同态加密等隐私计算领域的技术和内容。

问题:保护敏感数据

企业机构间合作处理数据越来越频繁,通常使用云服务为数据共享保驾护航。保护数据隐私至关重要,特别是在处理个人可识别信息(PII)、个人健康信息(PHI)、知识产权和情报洞察等敏感数据时。数据有三种基本状态:静态、传输和使用。通常情况下,敏感数据在存储(静态)和共享(传输)时都会进行加密或其他保护。然而,当数据以任何方式进行处理(使用)时,必须首先解密,这使其容易受到网络攻击。

全同态加密

全同态加密(Fully Homomorphic Encryption,FHE)常被描述为加密技术的“圣杯”,它允许在不解密的情况下对加密数据进行任意计算,潜在地解决了数据在使用中的问题。

FHE用于机器学习

FHE最有前景的应用领域之一是机器学习(ML)。近年来,ML发展迅速,应用数量不断增加,包括医学、金融、自然语言处理等领域。ML通常需要多方合作,而为了处理和分析数据(前面提到的使用状态),需要解密数据,这会导致安全漏洞。考虑到数据通常是敏感的,使用FHE进行ML是一种有效的隐私保护解决方案。

FHE用于ML的挑战

当使用FHE进行像ML训练所需的密集计算时,会出现功能性挑战,需要额外的复杂操作,比如引导(允许对数据进行大规模的加密计算链)。FHE与引导解决了许多功能性挑战,但需要大量的计算能力和时间。例如,在标准笔记本电脑上,未加密的计算可能需要数百毫秒完成,但在高端服务器上使用FHE运行可能需要数小时。

解决方案:硬件加速

使FHE中的引导变得实用的最有前途的努力集中在通过硬件平台进行加速上。FHE工作负载表现出

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值