McDSP贴士 - 使用6034降噪和优化嘈杂的失真吉他

本文介绍如何利用6034处理高增益放大器带来的过载和失真问题,通过减少噪声并紧缩混音,提升整体音质效果。我们将展示在6034中调整设置的具体步骤。

嗨,欢迎收看McDSP小贴士系列,我们将帮助您更好的使用McDSP。

今天将尝试使用6034处理嘈杂的失真吉他:高增益放大器的过载和失真,往往带有很大噪声,噪声门和噪声抑制系统都可以应用,但结果并不总是最佳的,我们将向您展示在6034中如何降低噪声,并有助于将其收紧以使混音效果更好。

点击查看原文:https://www.prettysound.net/blog/mcdsptie-shi-shi-yong-6034jiang-zao-he-you-hua-cao-za-de-shi-zhen-ji-ta.html

根据原作 https://pan.quark.cn/s/459657bcfd45 的源码改编 Classic-ML-Methods-Algo 引言 建立这个项目,是为了梳理总结传统机器学习(Machine Learning)方法(methods)或者算法(algo),各位同仁相互学习交流. 现在的深度学习本质上来自于传统的神经网络模型,很大程度上是传统机器学习的延续,同时也在不少时候需要结合传统方法来实现. 任何机器学习方法基本的流程结构都是通用的;使用的评价方法也基本通用;使用的一些数学知识也是通用的. 本文在梳理传统机器学习方法算法的同时也会顺便补充这些流程,数学上的知识以供参考. 机器学习 机器学习是人工智能(Artificial Intelligence)的一个分支,也是实现人工智能最重要的手段.区别于传统的基于规则(rule-based)的算法,机器学习可以从数据中获取知识,从而实现规定的任务[Ian Goodfellow and Yoshua Bengio and Aaron Courville的Deep Learning].这些知识可以分为四种: 总结(summarization) 预测(prediction) 估计(estimation) 假想验证(hypothesis testing) 机器学习主要关心的是预测[Varian在Big Data : New Tricks for Econometrics],预测的可以是连续性的输出变量,分类,聚类或者物品之间的有趣关联. 机器学习分类 根据数据配置(setting,是否有标签,可以是连续的也可以是离散的)任务目标,我们可以将机器学习方法分为四种: 无监督(unsupervised) 训练数据没有给定...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值