1、OSI(Open System Interconnect):开放系统互联,七层计算机网络模型,分别为:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
集线器,网卡工作在物理层,交换机,网桥工作在数据链路层,路由器工作在网络层。
物理层,定义物理介质的各种特性:1、机械特性;2、电子特性;3、功能特性;4、规程特性。
数据链路层,负责接收IP数据包并通过网络发送,或者从网络上接收物理帧,抽出IP数据包,交给IP层。常见的接口层协议有:Ethernet 802.3、Token Ring 802.5、X.25、Frame relay、HDLC、PPP ATM等。
网络层,负责相邻计算机之间的通信。其功能包括三方面。1)处理来自传输层的分组发送请求,收到请求后,将分组装入IP数据报,填充报头,选择去往信宿机的路径,然后将数据报发往适当的网络接口。2)处理输入数据报:首先检查其合法性,然后进行寻径--假如该数据报已到达信宿机,则去掉报头,将剩下部分交给适当的传输协议;假如该数据报尚未到达信宿,则转发该数据报。3)处理路径、流控、拥塞等问题。
网络层协议包括:
IP(Internet Protocol)协议,所有的T C P、U D P、I C M P及I G M P数据都以I P数据报格式传输。1)不可靠,意思是它不能保证 I P数据报能成功地到达目的地。 I P仅提供最好的传输服务。如果发生某种错误时,如某个路由器暂时用完了缓冲区, I P有一个简单的错误处理算法:丢弃该数据报,然后发送 I C M P消息报给信源端。任何要求的可靠性必须由上层来提供(如T C P) 。2)无连接,意思是I P并不维护任何关于后续数据报的状态信息。每个数据报的处理是相互独立的。这也说明, I P数据报可以不按发送顺序接收。如果一信源向相同的信宿发送两个连续的数据报(先是 A,然后是B) ,每个数据报都是独立地进行路由选择,可能选择不同的路线,因此B可能在A到达之前先到达。
ICMP(Internet Control Message Protocol)控制报文协议,用来检测网络是否通畅,用于在IP主机、路由器之间传递控制消息。控制消息是指网络通不通、主机是否可达、路由是否可用等网络本身的消息。Ping命令就是发送ICMP的echo包,通过回送的echo relay进行网络测试。当遇到IP数据无法访问目标、IP路由器无法按当前的传输速率转发数据包等情况时,会自动发送ICMP消息。Icmp攻击,比如,可以利用操作系统规定的ICMP数据包最大尺寸不超过64KB这一规定,向主机发起尺寸超过64KB上限ICMP数据包时,主机就会出现内存分配错误,导致TCP/IP堆栈崩溃,致使主机死机。(操作系统已经取消了发送ICMP数据包的大小的限制,解决了这个漏洞)。此外,向目标主机长时间、连续、大量地发送ICMP数据包,也会最终使系统瘫痪。大量的ICMP数据包会形成"ICMP风暴",使得目标主机耗费大量的CPU资源处理,疲于奔命。对策:配置防火墙,除了出站的ICMP Echo Request、出站的ICMP Source Quench、进站的TTL Exceeded和进站的ICMP Destination Unreachable之外,所有的ICMP消息类型都应该被阻止。防火墙 防火墙,除了出站的ICMP Echo Request、出站的ICMP Source Quench、进站的TTL Exceeded和进站的ICMP Destination Unreachable之外,所有的ICMP消息类型都应该被阻止。
ARP(Address Resolution Protocol)地址转换协议,ARP是正向地址解析协议,通过已知的IP,寻找对应主机的MAC地址。
RARP(Reverse ARP)反向地址转换协议通过MAC地址确定IP地址。比如无盘工作站还有DHCP服务。
传输层,提供应用程序间的通信。其功能包括:一、格式化信息流;二、提供可靠传输。为实现后者,传输层协议规定接收端必须发回确认,并且假如分组丢失,必须重新发送,即耳熟能详的"三次握手"过程,从而提供可靠的数据传输。
传输层协议主要是:传输控制协议TCP(Transmission Control Protocol)和用户数据报协议UDP(User Datagram protocol)。
TCP是面向连接的通信协议,通过三次握手建立连接,通讯完成时要拆除连接,由于TCP是面向连接的所以只能用于点对点的通讯。TCP提供的是一种可靠的数据流服务,采用"带重传的肯定确认"技术来实现传输的可靠性。TCP还采用一种称为"滑动窗口"的方式进行流量控制,所谓窗口实际表示接收能力,用以限制发送方的发送速度。如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向'上'传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。
UDP是面向无连接的通讯协议,UDP数据包括目的端口号和源端口号信息,由于通讯不需要连接,所以可以实现广播发送。UDP通讯时不需要接收方确认,属于不可靠的传输,可能会出丢包现象,实际应用中要求在程序员编程验证。UDP与TCP位于同一层,但它不管数据包的顺序、错误或重发。因此,UDP不被应用于那些使用虚电路的面向连接的服务,UDP主要用于那些面向查询---应答的服务,例如NFS。相对于FTP或Telnet,这些服务需要交换的信息量较小。使用UDP的服务包括NTP(网络时间协议)和DNS(DNS也使用TCP)。
应用层,向用户提供一组常用的应用程序,比如电子邮件、文件传输访问、远程登录等。远程登录TELNET使用TELNET协议提供在网络其它主机上注册的接口。TELNET会话提供了基于字符的虚拟终端。文件传输访问FTP使用FTP协议来提供网络内机器间的文件拷贝功能。
应用层协议主要包括如下几个:FTP、TELNET、DNS、SMTP、RIP、NFS、HTTP。
FTP(File Transfer Protocol)是文件传输协议,一般上传下载用FTP服务,数据端口是20H,控制端口是21H。
Telnet服务是用户远程登录服务,使用23H端口,使用明码传送,保密性差、简单方便。
DNS(Domain Name Service)是域名解析服务,提供域名到IP地址之间的转换。
SMTP(Simple Mail Transfer Protocol)是简单邮件传输协议,用来控制信件的发送、中转。
RIP (Router Information Protocol)是路由信息协议,用于网络设备之间交换路由信息。
NFS (Network File System)是网络文件系统,用于网络中不同主机间的文件共享。
HTTP(Hypertext Transfer Protocol)是超文本传输协议,用于实现互联网中的WWW服务。
| OSI中的层 | 功能 | TCP/IP协议族 |
|---|---|---|
| 应用层 | 文件传输,电子邮件,文件服务,虚拟终端 | TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet 等等 |
| 表示层 | 数据格式化,代码转换,数据加密 | 没有协议 |
| 会话层 | 解除或建立与别的接点的联系 | 没有协议 |
| 传输层 | 提供端对端的接口 | TCP,UDP |
| 网络层 | 为数据包选择路由 | IP,ICMP,OSPF,EIGRP,IGMP,RIP |
| 数据链路层 | 传输有地址的帧以及错误检测功能 | SLIP,CSLIP,PPP,MTU,ARP,RARP |
| 物理层 | 以二进制数据形式在物理媒体上传输数据 | ISO2110,IEEE802,IEEE802.2 |
2、地址分类,网关分类
A类地址的表示范围为:1.0.0.1~126.255.255.255,默认网络屏蔽为:255.0.0.0;A类地址分配给规模特别大的网络使用。A类网络用第一组数字表示网络本身的地址,后面三组数字作为连接于网络上的主机的地址。分配给具有大量主机(直接个人用户)而局域网络个数较少的大型网络。例如IBM公司的网络。
127.0.0.0到127.255.255.255是保留地址,用做循环测试用的。
0.0.0.0到0.255.255.255也是保留地址,用做表示所有的IP地址。
一个A类IP地址由1字节(每个字节是8位)的网络地址和3个字节主机地址组成,网络地址的最高位必须是"0",即第一段数字范围为1~127。每个A类地址理论上可连接16777214<256*256*256-2>;台主机(-2是因为主机中要用去一个网络号和一个广播号),Internet有126个可用的A类地址。A类地址适用于有大量主机的大型网络。
B类地址的表示范围为:128.0.0.1~191.255.255.255,默认网络屏蔽为:255.255.0.0;B类地址分配给一般的中型网络。B类网络用第一、二组数字表示网络的地址,后面两组数字代表网络上的主机地址。
169.254.0.0到169.254.255.255是保留地址。如果你的IP地址是自动获取IP地址,而你在网络上又没有找到可用的DHCP服务器,这时你将会从169.254.0.0到169.254.255.255中临时获得一个IP地址。
一个B类IP地址由2个字节的网络地址和2个字节的主机地址组成,网络地址的最高位必须是"10",即第一段数字范围为128~191。每个B类地址可连接65534(2^16-2,因为主机号的各位不能同时为0,1)台主机,Internet有16383(2^14-1)个B类地址(因为B类网络地址128.0.0.0是不指派的,而可以指派的最小地址为128.1.0.0[COME06])。
C类地址的表示范围为:192.0.0.1~223.255.255.255,默认网络屏蔽为:255.255.255.0;C类地址分配给小型网络,如一般的局域网,它可连接的主机数量是最少的,采用把所属的用户分为若干的网段进行管理。C类网络用前三组数字表示网络的地址,最后一组数字作为网络上的主机地址。
一个C类地址是由3个字节的网络地址和1个字节的主机地址组成,网络地址的最高位必须是"110",即第一段数字范围为192~223。每个C类地址可连接254台主机,Internet有2097152个C类地址段(32*256*256),有532676608个地址(32*256*256*254)。
RFC 1918留出了3块IP地址空间(1个A类地址段,16个B类地址段,256个C类地址段)作为私有的内部使用的地址。在这个范围内的IP地址不能被路由到Internet骨干网上;Internet路由器将丢弃该私有地址。
类 IP地址范围 子网掩码
A 1.0.0.0-126.255.255.255 255.0.0.0
B 128.0.0.0-191.255.255.255 255.255.0.0
C 192.0.0.0-223.255.255.255 255.255.255.0
题目:机器A的IP地址为202.96.128.130,子网掩码为255.255.255.128,则该IP地址的网络号为202.96.128(利用IP地址和子网掩码求与运算),主机号为130。
3.IPV4相比,IPV6具有以下几个优势:
1)IPv6具有更大的地址空间。IPv4中IP地址长度为32,即2^32-1个地址;而IPv6中IP地址的长度为128,即有2^128-1个地址。
2)IPv6使用更小的路由表。IPv6的地址分配一开始就遵循聚类(Aggregation)的原则,这使得路由器能在路由表中用一条记录(Entry)表示一片子网,大大减小了路由器中路由表的长度,提高了路由器转发数据包的速度。
3)IPv6增加了增强的组播(Multicast)支持以及对流的支持(Flow Control),这使得网络上的多媒体应用有了长足发展的机会,为服务质量(QoS,Quality of Service)控制提供了良好的网络平台。
4)IPv6加入了对自动配置(Auto Configuration)的支持。这是对DHCP协议的改进和扩展,使得网络(尤其是局域网)的管理更加方便和快捷。
5)IPv6具有更高的安全性。在使用IPv6网络中用户可以对网络层的数据进行加密并对IP报文进行校验,极大的增强了网络的安全性。
4、ARP是地址解析协议,简单语言解释一下工作原理。
答:
(1)首先,每个主机都会在自己的ARP缓冲区中建立一个ARP列表,以表示IP地址和MAC地址之间的对应关系。
(2)当源主机要发送数据时,首先检查ARP列表中是否有对应IP地址的目的主机的MAC地址,如果有,则直接发送数据,如果没有,就向本网段的所有主机发送ARP数据包,该数据包包括的内容有:源主机IP地址,源主机MAC地址,目的主机的IP地址。
(3)当本网络的所有主机收到该ARP数据包时,首先检查数据包中的IP地址是否是自己的IP地址,如果不是,则忽略该数据包,如果是,则首先从数据包中取出源主机的IP和MAC地址写入到ARP列表中,如果已经存在,则覆盖,然后将自己的MAC地址写入ARP响应包中,告诉源主机自己是它想要找的MAC地址。
(4)源主机收到ARP响应包后。将目的主机的IP和MAC地址写入ARP列表,并利用此信息发送数据。如果源主机一直没有收到ARP响应数据包,表示ARP查询失败。
广播发送ARP请求,单播发送ARP响应。
5、DNS(Domain Name System)域名系统,简单描述其工作原理。
答:当DNS客户机需要在程序中使用名称时,它会查询DNS服务器来解析该名称。客户机发送的每条查询信息包括三条信息:包括:指定的DNS域名,指定的查询类型,DNS域名的指定类别。基于UDP服务,端口53. 该应用一般不直接为用户使用,而是为其他应用服务,如HTTP,SMTP等在其中需要完成主机名到IP地址的转换。
6、TCP和UDP的区别?
答:1)TCP面向连接(如打电话要先拨号建立连接);UDP是无连接的,即发送数据之前不需要建立连接
2)TCP提供可靠的服务。也就是说,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达;UDP尽最大努力交付,即不保证可靠交付
3)TCP面向字节流,实际上是TCP把数据看成一连串无结构的字节流;UDP是面向报文的,UDP没有拥塞控制,因此网络出现拥塞不会使源主机的发送速率降低(对实时应用很有用,如IP电话,实时视频会议等)
4)每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信
5)TCP首部开销20字节;UDP的首部开销小,只有8个字节
3)TCP面向字节流,实际上是TCP把数据看成一连串无结构的字节流;UDP是面向报文的,UDP没有拥塞控制,因此网络出现拥塞不会使源主机的发送速率降低(对实时应用很有用,如IP电话,实时视频会议等)
4)每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信
5)TCP首部开销20字节;UDP的首部开销小,只有8个字节
6)TCP的逻辑通信信道是全双工的可靠信道,UDP则是不可靠信道
7、网关的作用?
答:通过它可以访问外网。
8、ipconfig的作用是什么?
答:显示当前TCP/IP配置的信息。
9、运行net share返回的结果是什么?
答:列出共享资源相关信息。
10、net use和net user分别指什么?
答:net user是对用户进行管理,如添加删除网络使用用户等。 net use是对网络设备进行管理。
11、如何查看当前系统开放的服务?
答:在命令提示符下执行net services命令。Windows下是用net start
12、除以上的命令,列出一些其他的命令?
答:taskkill:用于结束至少一个进程
tasklist:用于显示在本地或远程计算机上运行的所有进程
net view:显示计算机列表
netstat:显示网络连接、路由表和网络接口信息
13、关掉以下服务会出现什么情况?
答:关掉Automatic Updates:则不能自动更新
关掉Plug and Play:则会导致USB不能使用
关掉Remote Registry Service:远程用户不能修改计算机上的注册表设置
关掉Computer Browser:则会无法维护网络上计算机的最新列表以及提供这个列表给请求的程序。
14、端口及对应的服务?
答:
| 服务 | 端口号 | 服务 | 端口号 |
| FTP | 21 | SSH | 22 |
| telnet | 23 | SMTP | 25 |
| Domain(域名服务器) | 53 | HTTP | 80 |
| POP3 | 110 | NTP(网络时间协议) | 123 |
| MySQL数据库服务 | 3306 | Shell或 cmd | 514 |
| POP-2 | 109 | SQL Server | 1433 |
| SNMP | 161 |
|
|
15、ICMP协议?
答:ICMP是Internet Control Message Protocol,因特网控制报文协议。它是TCP/IP协议族的一个子协议,用于在IP主机、路由器之间传递控制消息。控制消息是指网络通不通、主机是否可达、路由器是否可用等网络本身的消息。这些控制消息虽然并不传输用户数据,但是对于用户数据的传递起着重要的作用。ICMP报文有两种:差错报告报文和询问报文。
16、TFTP协议?
答:Trivial File Transfer Protocol,是TCP/IP协议族中的一个用来在客户机与服务器之间进行简单文件传输的协议,提供不复杂、开销不大的文件传输服务。
17、HTTP协议?
答:HTTP超文本传输协议,是一个属于应用层的面向对象的协议,由于其简捷、快速的方式,适用于分布式超媒体信息系统。
18、DHCP协议?
答:动态主机配置协议,是一种让系统得以连接到网络上,并获取所需要的配置参数手段。
19、详细解释一下IP协议的定义,在哪个层上面,主要有什么作用?TCP和UDP呢?
答:IP协议是网络层的协议,它是为了实现相互连接的计算机进行通信设计的协议,它实现了自动路由功能,即自动寻径功能。TCP是传输层的协议,它向下屏蔽IP协议的不可靠传输的特性,向上提供一种面向连接的、可靠的点到点数据传输。TCP在可靠性和安全性上等更有保证。UDP也是传输层协议,它提供的是一种非面向连接的,不可靠的数据传输,这主要是有些应用需要更快速的数据传输,比如局域网内的大多数文件传输都是基于UDP的。UDP在传输速率上更快,开销更小。
20、请问交换机和路由器分别的实现原理是什么?分别在哪个层次上面实现的?
答:交换机用于局域网,利用主机的MAC地址进行数据传输,而不需要关心IP数据包中的IP地址,它工作于数据链路层。路由器识别网络是通过IP数据包中IP地址的网络号进行的,所以为了保证数据包路由的正确性,每个网络都必须有一个唯一的网络号。路由器通过IP数据包的IP地址进行路由的(将数据包递交给哪个下一跳路由器)。路由器工作于网络层。由于设备现在的发展,现在很多设备既具有交换又具有路由功能,两者的界限越来越模糊。
21、Internet上保留了哪些IP地址用于内部?
答:10.0.0.0 172.16.到172.31 192.168.0.到192.168.255。
22、ipconfig/all用于查看申请的本机IP地址
ipconfig/release用于释放IP
ipconfig/renew用于重新向DHCP服务器申请IP。
23、ADSL Asymmetric Digital Subscriber Line( 非对称数字用户线路)使用的是频分多路复用技术。它采用频分复用技术把普通的电话线分成了电话、上行和下行三个相对独立的信道,从而避免了相互之间的干扰。即使边打电话边上网,也不会发生上网速率和通话质量下降的情况。
24、网桥的作用
答:网桥是一个局域网与另一个局域网之间建立连接的桥梁。
25、防火墙的端口防护是指?
答:指通过对防火墙的端口开关的设置,关闭一些非必需端口,达到一定安全防护目的的行为。
26、IP数据包的格式?TCP和UDP数据报的格式?及头部常见的字段?
答:
(1)一个IP数据报由首部和数据两部分组成。首部由固定部分和可选部分组成。首部的固定部分有20字节。可选部分的长度变化范围为1——40字节。固定部分的字段:
| 字段名 | 位数(bit) | 字段名 | 位数 |
| 版本 | 4 Ipv4 | 首部长度 | 4(表示的最大数为15个单位,一个单位表示4字节) |
| 服务类型 | 8 以前很少用 | 总长度 | 16 (首部和数据部分的总长度,因此数据报的最大长度为65535字节,即64KB,但是由于链路层的MAC都有一定的最大传输单元,因此IP数据报的长度一般都不会有理论上的那么大,如果超出了MAC的最大单元就会进行分片) |
| 标识 | 16 (相同的标识使得分片后的数据报片能正确的重装成原来的数据报) | 标志 | 3 (最低位MF=1表示后面还有分片,MF=0表示这是若干个数据报片的最后一个 中间位DF=0才允许分片) |
| 片偏移 | 片偏移指出较长的分组在分片后,某片在原分组中的相对位置,都是8字节的偏移位置 | 生存时间 | 数据报在网络中的生存时间,指最多经过路由器的跳数 |
| 协议 | 8 (指出该数据报携带的数据是何种协议,以使得目的主机的IP层知道应将数据部分上交给哪个处理程序)如ICMP=1 IGMP=2 TCP=6 EGP=8 IGP=9 UDP=17 Ipv6=41 OSPF=89 | 首部校验和 | 这个部分只校验首部,不包括数据部分,计算方法:将首部划分为多个16位的部分,然后每个16位部分取反,然后计算和,再将和取反放到首部校验和。接收方收到后按同样的方法划分,取反,求和,在取反,如果结果为零,则接收,否则就丢弃 |
| 源地址 | 32 | 目的地址 | 32 |
(2)一个TCP报文段分为首部和数据两部分。首部由固定部分和选项部分组成,固定部分是20字节。TCP首部的最大长度为60。首部固定部分字段:
| 字段名 | 字节(Byte) | 字段名 | 字节(Byte) |
| 源端口 | 2 | 目的端口 | 2 |
| 序号 | 4 | 确认号 | 4,是期望收到对方的下一个报文段的数据的第一个字节的序号 |
| 数据偏移 | 4bit 指出TCP报文段的数据起始处距离TCP报文段的起始处有多远 | 保留 | 6bit |
| 紧急比特 |
| 确认比特ACK | 只有当ACK=1时,确认号字段才有效 |
| 推送比特 |
| 复位比特 |
|
| 同步比特 |
| 终止比特 |
|
| 窗口 | 2 | 检验和 | 2 (包括首部和数据两部分,同时还要加12字节的伪首部进行校验和计算) |
| 选项 | 长度可变(范围1——40) |
|
|
TCP的12字节伪首部:
| 源IP地址(4) | 目的IP地址(4) | 0 (1) | 6(1) 代表这是TCP,IP协议中提到过 | TCP长度(2) |
(3)用户数据报UDP由首部和数据部分组成。首部只有8个字节,由4个字段组成,每个字段都是两个字节。
| 字段名 | 字节 | 字段名 | 字节 |
| 源端口 | 2 | 目的端口 | 2 |
| 长度 | 2 | 检验和 | 2 (检验首部和数据,加12字节的伪首部) |
UDP的12字节伪首部:
| 源IP地址(4) | 目的IP地址(4) | 0 (1) | 17(1) 代表这是UDP,IP协议中提到过 | UDP长度(2) |
27、面向连接和非面向连接的服务的特点是什么?
答:面向连接的服务,通信双方在进行通信之前,要先在双方建立起一个完整的可以彼此沟通的通道,在通信过程中,整个连接的情况一直可以被实时地监控和管理。
非面向连接的服务,不需要预先建立一个联络两个通信节点的连接,需要通信的时候,发送节点就可以往网络上发送信息,让信息自主地在网络上去传,一般在传输的过程中不再加以监控。
28、以太网帧的格式
答:
| 目的地址 | 源地址 | 类型 | 数据 | FCS |
29、TCP的三次握手过程?为什么会采用三次握手,若采用二次握手可以吗?
答:建立连接的过程是利用客户服务器模式,假设主机A为客户端,主机B为服务器端。
(1)TCP的三次握手过程:主机A向B发送连接请求;主机B对收到的主机A的报文段进行确认;主机A再次对主机B的确认进行确认。
(2)采用三次握手是为了防止失效的连接请求报文段突然又传送到主机B,因而产生错误。失效的连接请求报文段是指:主机A发出的连接请求没有收到主机B的确认,于是经过一段时间后,主机A又重新向主机B发送连接请求,且建立成功,顺序完成数据传输。考虑这样一种特殊情况,主机A第一次发送的连接请求并没有丢失,而是因为网络节点导致延迟达到主机B,主机B以为是主机A又发起的新连接,于是主机B同意连接,并向主机A发回确认,但是此时主机A根本不会理会,主机B就一直在等待主机A发送数据,导致主机B的资源浪费。
30、电路交换、报文交换分组交换的比较?
答:电路交换:公共电话网(PSTN网)和移动网(包括GSM和CDMA网)采用的都是电路交换技术,它的基本特点是采用面向连接的方式,在双方进行通信之前,需要为通信双方分配一条具有固定宽带的通信电路,通信双方在通信过程中一直占用所分配的资源,直到通信结束,并且在电路的建立和释放过程中都需要利用相关的信令协议。这种方式的优点是在通信过程中可以保证为用户提供足够的带宽,并且实时性强,时延小,交换设备成本低,但同时带来的缺点是网络带宽利用率不高,一旦电路被建立不管通信双方是否处于通话状态分配的电路一直被占用。连接建立——数据传输——释放链接
报文交换:报文交换和分组交换类似,也采用存储转发机制,但报文交换是以报文作为传送单元,由于报文长度差异很大,长报文可能导致很大的时延,并且对每个节点来说缓冲区的分配也比较困难,为了满足各种长度报文的需要并且达到高效的目的,节点需要分配不同大小的缓冲区,否则就有可能造成数据传送的失败。在实际应用中报文交换主要用于传输报文较短,实时性要求较低的通信业务,如公用电报网,报文交换比分组交换出现的要早一些,分组交换是在报文交换的基础上,将报文分割成分组进行传输,在传输时延和传输效率上进行了平衡。另外一个缺点是出错时,整个报文都将重传。
分组交换:电路交换技术主要适用于传送话音相关的业务,这种网络交换方式对于数据业务而言,有着很大的局限性。首先是数据通信具有较强的突发性,峰值比特率和平均比特率相差较大,如果采用电路交换技术,若按峰值比特率分配电路带宽会造成资源的极大浪费,如果按平均比特率分配带宽,则会造成数据的大量丢失,其次是和语音业务比较,数据业务对时延没有严格的要求,但是需要进行无差错的传输,而语音信号可以有一定程序的失真但实时性要高。分组交换技术就是针对数据通信业务的特点而提出的一种交换方式,它的基本特点是面向无连接而采用存储转发的方式,将需要传送的数据按照一定长度分割成许多小段数据,并在数据之前增加相应的用于对数据进行选路和校验等功能的头部字段,作为数据传送的基本单元,即分组。采用分组交换技术,在通信之前不需要建立连接,每个节点首先将前一节点送来的分组收下并保存在缓冲区中,然后根据分组头部中的地址信息选择适当的链路将其发送至下一个节点,这样在通信过程中可以根据用户的要求和网络的能力来动态分配带宽。分组交换比电路交换的电路利用率高,但时延较大。分组转发的带来的问题:带来排队时延以及增加头部带来的开销。
31、电信网络分类
|
电信网络 |
|
电路交换网络 |
|
分组交换网络 |
|
FDM |
|
TDM |
|
虚电路网络 |
|
数据报网络 |
32、网络按地域范围分类?
答:局域网、城域网、广域网。
33、网络按使用者分类为:公共网和专用网。
34、网络的拓扑结构主要有:星形、总线型、环形以及树型、全连接、不规则网状。
36、双绞线的线对?
答:1-2、7-8、3-6、4-5 白蓝-蓝、白橙-橙、白绿-绿、白棕-棕
37、数据链路层协议可能提供的服务?
答:成帧、链路访问、透明传输、可靠交付、流量控制、差错检测、差错纠正、半双工和全双工。最重要的是帧定界(成帧)、透明传输以及差错检测。
38、帧定界?
答:帧定界就是确定帧的界限,其方法有:字节计数法、字符填充法、零比特填充法。
39、透明传输?
答:即应能传输任何的数据,在帧定界中用到的标记帧起点和结束的字符也应该能正确的被传输。
40、差错检测?
答:循环冗余检验CRC,计算出的结果叫做帧检验序列FCS。循环冗余检验序列CRC差错检测技术只能做到无差错接受,即凡是接收端数据链路层接受的帧,我们都能以非常接近于1的概率认为这些帧在传输过程中没有产生差错,但是要做到可靠传输(即发送什么就收到什么),也就是说,传输到接收端的帧无差错、无丢失、无重复,同时还按发送的顺序接收,这时就必须再加上确认和重传机制。
41、实现可靠传输的协议?
(1)停止等待协议:每发送完一帧就停止发送,直到收到接收到发送回来的确认在发送下一帧,如果没有收到接收端的确认,则通过设定的定时器超时了重传上一帧。其存在的三种可能:
重传可能会导致接收端收到相同的帧,这时候根据序号来判定,如果收到的帧的序号之前已经被接收到了,则新接收到的帧被丢弃。因为可能会出现接收端不能在一次情况就能正确接收,因此帧需要在发送端备份一份,直到被确认后才丢弃,因为该协议一次只能发送一帧,因此发送端的缓存区不需要太大。
(2)连续ARQ协议:发送窗口大于1,接收窗口等于1,因此发送窗口已经发送到了序号为5的帧,但是接收端接收到序号为3的帧出现错误时,那3号以后的帧都需要重传,因此出现错误的情况可能会导致重传多个帧,同时为了能够在出错时重传,因此发送出来还没有经过确认的帧都需要在发送端全缓区进行保存,这种情况需要的缓冲区比停止等待协议需要的更大。但采用n比特来表示编号时,则发送窗口的的大小为 时,该协议才能正确工作。若用n比特编号时,则发送窗口的大小 WT<=2n-1。
(3)选择重传ARQ协议:发送窗口和接收窗口都大于1,这种情况可能减少重传帧的数量,若用n比特编号时,则接收窗口的大小为WR £ 2n/2。
42、PPP协议工作过程?
答:用户拨号接入ISP,ISP的调制解调器对拨号做出确认,并建立一条物理链路,用户向ISP的路由器发送一系列的LCP分组,这是为PPP选择一些参数,然后配置网络层,NCP为新接入的PC分配一个临时的IP地址,这样用户PC就成为因特网上的主机,通信结束后,NCP释放网络层连接收回IP地址,然后,LCP释放数据链路层连接,最后释放物理层的连接。
43、数据链路层互联设备
答:(1)网桥:互连两个采用不同数据链路层协议,不同传输介质与不同传输速率的网络,网桥互连的网络在数据链路层以上采用相同的协议。
(2)交换机在数据链路层上实现互连的存储转发设备。交换机按每个包中的MAC地址相对简单地决策信息转发,交换机对应硬件设备,网桥对应软件。
44、局域网的关键技术?
答:拓扑结构(星形,总线型,环形,树型),介质访问方式(CSMA/CD,Token-passing),信号传输形式(基带、宽带)。
45、网络接口卡(网卡)的功能?
答:(1)进行串行/并行转换。
(2)对数据进行缓存。
(3)在计算机的操作系统安装设备驱动程序。
(4)实现以太网协议。
46、CSMA/CD 数据链路层
答:是指载波监听多点接入/碰撞检测
(1)多点接入是指多台计算机以多点接入的方式连接在一条总线上
(2)载波监听是指每一个站在发送数据之前首先要检查一下总线上是否已经有其他计算机在发送数据,如果有,则暂时不要发送,避免碰撞
(3)实际在总线上并没有什么载波,实际是采用电子技术检测总线上是否有其他计算机发送的数据信号
(4)碰撞检测就是计算机边发送数据边检测信道上的信号电压大小,当发生了碰撞即产生了冲突,碰撞检测也叫做“冲突检测”
(5)当发生了碰撞时,总线上传输的信号就产生了失真,无法恢复出有用的信息,因此为了不浪费网络资源,一旦检测到碰撞发生时,就停止数据发送。然后再等待一段随机时间后在发送。
(6)强化碰撞,当检测到碰撞后,不仅立即停止发送数据外,还要人为的发送一些干扰信息,让其他站也知道此时碰撞发生了。
(7)由于信号在总线上的传输也是需要一定的时间的,所以当一个站检测到总线是空闲的时候,也可能并非是真正的空闲,因为会存在其他站发送了数据,只是还没有传送到该站能检测的范围内。这种情况下,发送数据最终也会导致碰撞发生。
(8)工作原理
(1)发送前先监听信道是否空闲,若空闲则立即发送;
(2)如果信道忙,则继续监听,一旦空闲就立即发送;
(3)在发送过程中,仍需继续监听。若监听到冲突,则立即停止发送数据,然后发送一串干扰信号(Jam);
(4)发送Jam信号的目的是强化冲突,以便使所有的站点都能检测到发生了冲突。等待一段随机时间(称为退避)以后,再重新尝试。
总结为四句话:发前先听,空闲即发送,边发边听,冲突时退避。
47、以太网MAC帧格式?
答:
| 目的地址(6字节) | 源地址(6字节) | 类型(2字节) | 数据(46——1500字节) | FCS(4字节) |
48、虚拟局域网VLAN?
答:(1)VLAN只是局域网提供给用户的一种服务,而并不是一种新的局域网络。VLAN限制了接收广播消息的工作站数,使得网络不会因传播过多的广播信息(即广播风暴)而引起性能恶化。
(2)划分VLAN的方法:基于端口;基于MAC地址;基于IP地址。
(3)VLAN的帧格式
| 目的地址(6字节) | 源地址(6字节) | VLAN标记(表明该站是属于哪个VLAN的) | 类型(2字节) | 数据(46——1500字节) | FCS(4字节) |
49、无线局域网的MAC层?
答:(1)隐藏站问题,暴露站问题
(2)CSMA/CA:是改进的CSMA/CD,增加的功能是碰撞避免,实际就是在发送数据之前对信道进行预约。
50、NAT?
答:(1)网络地址转换,是一种将私有地址转换为合法IP地址的转换技术,这种技术可以解决现在IP地址不够的问题。
(2)NAT的实现方式:静态转换;动态转换;端口多路复用(即 内部IP+端口号——外部IP+端口号,这种方式改变外出数据包的源端口并进行端口转换,内部网络的所有主机都可共享一个合法外部IP地址实现对Internet的访问,从而节约IP资源,同时隐藏网络内部的所有主机,有效避免来自Internet的攻击)。
(3)缺点:由于需要将IP包头中的IP地址进行转换,因此不能进行加密操作。
51、私有(保留)地址?
答:A类:10.0.0.0——10.255.255.255
B类:172.16.0.0——172.31.255.255
C类:192.168.0.0——192.168.255.255
53、SNMP?
答:简单网络管理协议的英文缩写。
54、TTL是什么?作用是什么?哪些工具会用到它(ping traceroute ifconfig netstat)?
答:TTL是指生存时间,简单来说,它表示了数据包在网络中的时间,经过一个路由器后TTL就减一,这样TTL最终会减为0,当TTL为0时,则将数据包丢弃,这样也就是因为两个路由器之间可能形成环,如果没有TTL的限制,则数据包将会在这个环上一直死转,由于有了TTL,最终TTL为0后,则将数据包丢弃。ping发送数据包里面有TTL,但是并非是必须的,即是没有TTL也是能正常工作的,traceroute正是因为有了TTL才能正常工作,ifconfig是用来配置网卡信息的,不需要TTL,netstat是用来显示路由表的,也是不需要TTL的。
55、路由表是做什么用的?在Linux环境中怎么配置一条默认路由?
答:路由表是用来决定如何将一个数据包从一个子网传送到另一个子网的,换句话说就是用来决定从一个网卡接收到的包应该送到哪一个网卡上去。路由表的每一行至少有目标网络号、子网掩码、到这个子网应该使用的网卡这三条信息。当路由器从一个网卡接收到一个包时,它扫描路由表的每一行,用里面的子网掩码与数据包中的目标IP地址做逻辑与运算(&)找出目标网络号。如果得出的结果网络号与这一行的网络号相同,就将这条路由表六下来作为备用路由。如果已经有备用路由了,就载这两条路由里将网络号最长的留下来,另一条丢掉(这是用无分类编址CIDR的情况才是匹配网络号最长的,其他的情况是找到第一条匹配的行时就可以进行转发了)。如此接着扫描下一行直到结束。如果扫描结束仍没有找到任何路由,就用默认路由。确定路由后,直接将数据包送到对应的网卡上去。在具体的实现中,路由表可能包含更多的信息为选路由算法的细节所用。
在Linux上可以用“route add default gw<默认路由器 IP>”命令配置一条默认路由。
56、每个路由器在寻找路由时需要知道哪5部分信息?
答:目的地址:报文发送的目的地址
邻站的确定:指明谁直接连接到路由器的接口上
路由的发现:发现邻站知道哪些网络
选择路由:通过从邻站学习到的信息,提供最优的到达目的地的路径
保持路由信息:路由器保存一张路由表,它存储所知道的所有路由信息。
57、EGP,IGP?
答:IGP:内部网关协议,即在一个自治系统内部使用的路由选择协议,如RIP和OSPF。
(a)RIP是一种分布式的基于距离向量的路由选择协议,要求网络中的每一个路由器都要维护从它自己到其他每一个目的网络的距离向量。距离即是跳数,路由器与直接相连的网络跳数为1,以后每经过一个路由器跳数加1。RIP允许一条路径最多包含15个路由器,因此当距离为16时认为不可达,这因为如此限制了网络的规模,说明RIP只能工作在规模较小的网络中。RIP的三个要点:仅和相邻路由器交换信息;交换的信息是当前路由器知道的全部信息,即路由表;按固定的时间间隔交换路由信息,如30秒。RIP协议使用运输层的用户数据报UDP进行传送,因此RIP协议的位置位于应用层,但是转发IP数据报的过程是在网络层完成的。RIP是好消息传播的快,坏消息传播的慢。
(b)OSPF:最短路径优先,三个要点:采用洪泛法向本自治系统的路由器发送信息;发送的信息就是与本路由器相邻的所有路由器的链路状态,但这只是路由器所知道的部分信息;只有当链路状态发生变化时,路由器才用洪泛法向所有路由器发送此信息。OSPF直接使用IP数据包传送,因此OSPF位于网络层。
EGP:外部网关协议,若源站和目的站处在不同的自治系统中,当数据报传到一个自治系统的边界时,就需要使用一种协议将路由选择信息传递到另一个自治系统中,如EGP。
58、自适应网卡只有红灯闪烁,绿灯不亮,这种情况正常吗?
答:正常。自适应网卡红灯代表连通/工作,即连通时红灯长亮,传输数据时闪烁,绿灯代表全双工,即全双工状态是亮,半双工状态灭。如果一个半双工的网络设备(如HUB)和自适应网络相连,由于这张网卡是自适应网卡,它就会工作在半双工状态,所以绿灯不亮也属于正常情况。
补充:网卡红绿灯是网卡工作的指示灯,红灯亮表示正在发送或接收数据,绿灯亮则表示网络连接正常。因此正常情况下应该是绿灯长亮,因为绿灯长亮才代表网络是通的。而有数据传输时,红灯就会闪烁。
59、两台笔记本电脑连起来后ping不同,你觉得可能存在哪些问题?
答:(1)首先考虑是否是网络的问题
(2)局域网设置问题,电脑互联是要设置的。看是否安装了必要的网络协议,最重要的是IP地址是否设置正确。
(3)网卡驱动未安装正确
(4)防火墙设置有问题
(5)是否有什么软件阻止了ping包
60、与IP协议配套的其他协议?
答:ARP:地址解析协议 RARP:逆地址解析协议
ICMP:因特网控制报文协议 IGMP:因特网组管理协议
61、IP地址分类?
答:IPv4地址共有32bit
|
| 网络号 | 网络范围 | 主机号 |
| A类 | 8bit 第一位固定为0 | 0——127 | 24bit |
| B类 | 16bit 前两位固定为10 | 128.0——191.255 | 16bit |
| C类 | 24bit 前三位固定为110 | 192.0.0——223.255.255 | 8bit |
| D类 | 前四位固定为 1110,后面为多播地址 所以D类地址为多播地址 | ||
| E类 | 前五位固定为 11110,后面保留为今后所用 | ||
一般全0或全1的地址不使用,有特殊意思,主机地址为全1时为广播地址,全0时表示网络地址。同时127.0.0.1表示回路,ping该IP地址可以测试本机的TCP/IP协议安装是否成功。
63、划分子网?
答:从大的方面来看,跟只有网络号和主机号的分类方式类似,这是由分配到网络号的网络内部自己在进行分配,是从主机号部分借用位来形成子网,涉及到子网时,就要有子网掩码,一个涉及到了子网的IP地址的网络号等于该IP地址与子网掩码的与(&)运算的结果。
64、IPv6?
答:采用128bit,首部固定部分为40字节。
65、运输层协议与网络层协议的区别?
答:网络层协议负责的是提供主机间的逻辑通信
运输层协议负责的是提供进程间的逻辑通信
66、运输层的协议?
答:TCP,传输单位称为:TCP报文段
UDP,传输单位称为:用户数据报
其端口的作用是识别那个应用程序在使用该协议。
67、接入网用的是什么接口?
答:一般采用E1,V.24,V.35,等接口。
68、直接链接两个信令点的一组链路称作什么?
答:PPP点到点连接。
本文详细介绍了计算机网络中的OSI七层模型及其各层的功能与常见协议,深入探讨了IP、TCP、UDP等关键协议的工作原理与特点,同时讲解了路由、交换、ARP、DNS等网络基础知识。
1477

被折叠的 条评论
为什么被折叠?



