JVM内存模型

 JVM内存模型总体架构图

      

1)程序计数器
多线程时,当线程数超过CPU数量或CPU内核数量,线程之间就要根据时间片轮询抢夺CPU时间资源。因此每个线程有要有一个独立的程序计数器,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成,记录下一条要运行的指令。线程私有的内存区域。如果执行的是JAVA方法,计数器记录正在执行的java字节码地址,如果执行的是native方法,则计数器为空。

此内存区域是唯一一个在Java 虚拟机规范中没有规定任何OutOfMemoryError情况的区域。


2)虚拟机栈
线程私有的,它的生命周期与线程相同,与线程在同一时间创建和销毁。虚拟机栈描述的是JAVA方法执行的内存模型。每个方法执行时都会创建一个桢栈来存储方法的的变量表、操作数栈、动态链接方法、返回值、返回地址等信息。每一个方法被调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。对于执行引擎来说,活动线程中,只有栈顶的栈帧是有效的,称为当前栈帧,这个栈帧所关联的方法称为当前方法执行引擎所运行的所有字节码指令都只针对当前栈帧进行操作栈的大小决定了方法调用的可达深度(递归多少层次,或嵌套调用多少层其他方法,-Xss参数可以设置虚拟机栈大小)。栈的大小可以是固定的,或者是动态扩展的。如果请求的栈深度大于最大可用深度,则抛出stackOverflowError;如果栈是可动态扩展的,但没有内存空间支持扩展,则抛出OutofMemoryError。下图为栈帧结构图:

 

3)本地方法区
本地方法栈(Native MethodStacks)与虚拟机栈所发挥的作用是非常相似的,其区别不过是虚拟机栈为虚拟机执行Java 方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的Native 方法(本地方法)服务。与虚拟机栈一样,本地方法栈区域也会抛出StackOverflowError和OutOfMemoryError异常。

4)JAVA堆

堆是Java 虚拟机所管理的内存中最大的一块。Java 堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例和数组,几乎所有的对象实例都在这里分配内存。堆是垃圾收集器管理的主要区域。

堆可以分为新生代和老年代(tenured)。

新生代(young)程序新创建的对象都是从新生代分配内存,新生代由Eden Space和两块相同大小的Survivor Space(通常又称S0和S1或From和To)构成,可通过-Xmn参数来指定新生代的大小,也可以通过-XX:SurvivorRation来调整Eden Space及SurvivorSpace的大小。

老年代(tenured):用于存放经过多次新生代GC仍然存活的对象,例如缓存对象,新建的对象也有可能直接进入老年代,主要有两种情况:

1、大对象,可通过启动参数设置-XX:PretenureSizeThreshold=1024(单位为字节,默认为0)来代表超过多大时就直接在老年代分配。

2、大的数组对象,且数组中无引用外部对象。老年代所占的内存大小为-Xmx对应的值减去-Xmn对应的值。

 

堆的大小可以通过-Xms(最小值)和-Xmx(最大值)参数设置,-Xms为JVM启动时申请的最小内存,默认为操作系统物理内存的1/64但小于1G,-Xmx为JVM可申请的最大内存,默认为物理内存的1/4但小于1G,默认当空余堆内存小于40%时,JVM会增大Heap到-Xmx指定的大小,可通过-XX:MinHeapFreeRation=来指定这个比列;当空余堆内存大于70%时,JVM会减小heap的大小到-Xms指定的大小,可通过XX:MaxHeapFreeRation=来指定这个比列,对于运行系统,为避免在运行时频繁调整Heap的大小,通常-Xms与-Xmx的值设成一样。

如果在堆中没有内存完成实例分配,并且堆也无法再扩展时,将会抛出OutOfMemoryError 异常。

 

5)方法区

 

线程共享的,用于存放被虚拟机加载的类的元数据信息:如常量、静态变量、即时编译器编译后的代码。也成为永久代。如果hotspot虚拟机确定一个类的定义信息不会被使用,也会将其回收。回收的基本条件至少有:所有该类的实例被回收,而且装载该类的ClassLoader被回收

 

方法区在一个jvm实例的内部,类型信息被存储在一个称为方法区的内存逻辑区中。类型信息是由类加载器在类加载时从类文件中提取出来的。类(静态)变量也存储在方法区中。

简单说方法区用来存储类型的元数据信息,一个.class文件是类被java虚拟机使用之前的表现形式,一旦这个类要被使用,java虚拟机就会对其进行装载、连接(验证、准备、解析)和初始化。而装载(后的结果就是由.class文件转变为方法区中的一段特定的数据结构。这个数据结构会存储如下信息:

 

类型信息

      这个类型的全限定名

      这个类型的直接超类的全限定名

      这个类型是类类型还是接口类型

      这个类型的访问修饰符

      任何直接超接口的全限定名的有序列表

 

字段信息

      字段名

      字段类型

      字段的修饰符

 

方法信息

      方法名

      方法返回类型

      方法参数的数量和类型(按照顺序)

      方法的修饰符

 

其他信息

      除了常量以外的所有类(静态)变量

      一个指向ClassLoader的指针

      一个指向Class对象的指针

      常量池(常量数据以及对其他类型的符号引用)

 

JVM为每个已加载的类型都维护一个常量池。常量池就是这个类型用到的常量的一个有序集合,包括实际的常量(string,integer,和floating point常量)和对类型,域和方法的符号引用。池中的数据项象数组项一样,是通过索引访问的

 

每个类的这些元数据,无论是在构建这个类的实例还是调用这个类某个对象的方法,都会访问方法区的这些元数据。

构建一个对象时,JVM会在堆中给对象分配空间,这些空间用来存储当前对象实例属性以及其父类的实例属性(而这些属性信息都是从方法区获得),注意,这里并不是仅仅为当前对象的实例属性分配空间,还需要给父类的实例属性分配,到此其实我们就可以回答第一个问题了,即实例化父类的某个子类时,JVM也会同时构建父类的一个对象。从另外一个角度也可以印证这个问题:调用当前类的构造方法时,首先会调用其父类的构造方法直到Object,而构造方法的调用意味着实例的创建,所以子类实例化时,父类肯定也会被实例化。

类变量被类的所有实例共享,即使没有类实例时你也可以访问它。这些变量只与类相关,所以在方法区中,它们成为类数据在逻辑上的一部分。在JVM使用一个类之前,它必须在方法区中为每个non-final类变量分配空间。

 

方法区主要有以下几个特点:

1、方法区是线程安全的。由于所有的线程都共享方法区,所以,方法区里的数据访问必须被设计成线程安全的。例如,假如同时有两个线程都企图访问方法区中的同一个类,而这个类还没有被装入JVM,那么只允许一个线程去装载它,而其它线程必须等待

2、方法区的大小不必是固定的,JVM可根据应用需要动态调整。同时,方法区也不一定是连续的,方法区可以在一个堆(甚至是JVM自己的堆)中自由分配。

3、方法区也可被垃圾收集,当某个类不在被使用(不可触及)时,JVM将卸载这个类,进行垃圾收集

 

可以通过-XX:PermSize 和 -XX:MaxPermSize 参数限制方法区的大小。

对于习惯在HotSpot 虚拟机上开发和部署程序的开发者来说,很多人愿意把方法区称为“永久代”(PermanentGeneration),本质上两者并不等价,仅仅是因为HotSpot 虚拟机的设计团队选择把GC 分代收集扩展至方法区,或者说使用永久代来实现方法区而已。对于其他虚拟机(如BEA JRockit、IBM J9 等)来说是不存在永久代的概念的。

相对而言,垃圾收集行为在这个区域是比较少出现的,但并非数据进入了方法区就如永久代的名字一样“永久”存在了。这个区域的内存回收目标主要是针对常量池的回收和对类型的卸载。

当方法区无法满足内存分配需求时,将抛出OutOfMemoryError异常。

 


JVM参数:

 

-XX:+PrintGCDetails  打印垃圾回收信息

-Xms 为Heap区域的初始值,线上环境需要与-Xmx设置为一致,否则capacity的值会来回飘动
-Xmx 为Heap区域的最大值
-Xss(或-ss) 线程栈大小(指一个线程的native空间)1.5以后是1M的默认大小
-XX:PermSize与-XX:MaxPermSize  方法区(永久代)的初始大小和最大值(但不是本地方法区)
-XX:NewRatio  老年代与新生代比率
-XX:SurvivorRatio  Eden与Survivor的占用比例。例如8表示,一个survivor区占用 1/8 的Eden内存,即1/10的新生代内存,为什么不是1/9?因为我们的新生代有2个survivor,即S1和S22。所以survivor总共是占用新生代内存的 2/10,Eden与新生代的占比则为 8/10。
-XX:MaxHeapFreeRatio  GC后,如果发现空闲堆内存占到整个预估的比例小于这个值,则减小堆空间。
-XX:MinHeapFreeRatio  GC后,如果发现空闲堆内存占到整个预估的比例大于这个值,则增大堆空间。
-XX:NewSize    新生代大小

参考文章:

http://www.cubrid.org/blog/dev-platform/understanding-java-garbage-collection/

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html

 http://blog.youkuaiyun.com/kingofworld/article/details/17718587

 

根据原作 https://pan.quark.cn/s/459657bcfd45 的源码改编 Classic-ML-Methods-Algo 引言 建立这个项目,是为了梳理和总结传统机器学习(Machine Learning)方法(methods)或者算法(algo),和各位同仁相互学习交流. 现在的深度学习本质上来自于传统的神经网络模型,很大程度上是传统机器学习的延续,同时也在不少时候需要结合传统方法来实现. 任何机器学习方法基本的流程结构都是通用的;使用的评价方法也基本通用;使用的一些数学知识也是通用的. 本文在梳理传统机器学习方法算法的同时也会顺便补充这些流程,数学上的知识以供参考. 机器学习 机器学习是人工智能(Artificial Intelligence)的一个分支,也是实现人工智能最重要的手段.区别于传统的基于规则(rule-based)的算法,机器学习可以从数据中获取知识,从而实现规定的任务[Ian Goodfellow and Yoshua Bengio and Aaron Courville的Deep Learning].这些知识可以分为四种: 总结(summarization) 预测(prediction) 估计(estimation) 假想验证(hypothesis testing) 机器学习主要关心的是预测[Varian在Big Data : New Tricks for Econometrics],预测的可以是连续性的输出变量,分类,聚类或者物品之间的有趣关联. 机器学习分类 根据数据配置(setting,是否有标签,可以是连续的也可以是离散的)和任务目标,我们可以将机器学习方法分为四种: 无监督(unsupervised) 训练数据没有给定...
本系统采用微信小程序作为前端交互界面,结合Spring Boot与Vue.js框架实现后端服务及管理后台的构建,形成一套完整的电子商务解决方案。该系统架构支持单一商户独立运营,亦兼容多商户入驻的平台模式,具备高度的灵活性与扩展性。 在技术实现上,后端以Java语言为核心,依托Spring Boot框架提供稳定的业务逻辑处理与数据接口服务;管理后台采用Vue.js进行开发,实现了直观高效的操作界面;前端微信小程序则为用户提供了便捷的移动端购物体验。整套系统各模块间紧密协作,功能链路完整闭环,已通过严格测试与优化,符合商业应用的标准要求。 系统设计注重业务场景的全面覆盖,不仅包含商品展示、交易流程、订单处理等核心电商功能,还集成了会员管理、营销工具、数据统计等辅助模块,能够满足不同规模商户的日常运营需求。其多店铺支持机制允许平台方对入驻商户进行统一管理,同时保障各店铺在品牌展示、商品销售及客户服务方面的独立运作空间。 该解决方案强调代码结构的规范性与可维护性,遵循企业级开发标准,确保了系统的长期稳定运行与后续功能迭代的可行性。整体而言,这是一套技术选型成熟、架构清晰、功能完备且可直接投入商用的电商平台系统。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
JVM(Java Virtual Machine)即Java虚拟机,是一种用于计算设备的规范,它是一个虚构出来的计算机,通过在实际的计算机上仿真模拟各种计算机功能来实现 [^1]。JVM内存模型主要包含以下几个部分: ### 程序计数器 程序计数器用于记录当前执行的指令地址。如果程序执行的是一个Java方法,计数器记录的是正在执行的虚拟机字节码指令地址;若正在执行的是一个本地(native,由C语言编写完成)方法,则计数器的值为Undefined。由于它只是记录当前指令地址,不存在内存溢出的情况,是所有JVM内存区域中唯一一个没有定义OutOfMemoryError的区域 [^5]。 ### Java堆 Java堆是Java代码可及的内存,是留给开发人员使用的。堆用于存储对象实例及数组值,Java中所有通过new创建的对象的内存都在此分配,堆区由所有线程共享。Heap中对象所占用的内存由GC进行回收。在32位操作系统上最大为2GB,在64位操作系统上则没有限制,其大小可通过 -Xms 和 -Xmx 来控制。-Xms 为JVM启动时申请的最小Heap内存,默认为物理内存的1/64但小于1GB;-Xmx 为JVM可申请的最大Heap内存,默认为物理内存的1/4但小于1GB。默认当空余堆内存小于40%时,JVM会增大Heap到 -Xmx 指定的大小,可通过 -XX:MinHeapFreeRatio= 来指定这个比例;当空余堆内存大于70%时,JVM会减小Heap的大小到 -Xms 指定的大小,可通过 -XX:MaxHeapFreeRatio= 来指定这个比例。对于运行系统而言,为避免在运行时频繁调整Heap的大小,通常将 -Xms 和 -Xmx 的值设成一样 [^2][^3]。 ### 非堆(Non - Heap) 非堆是JVM留给自己用的,方法区、JVM内部处理或优化所需的内存 (如JIT编译后的代码缓存)、每个类结构 (如运行时常量池、字段和方法数据)以及方法和构造方法的代码都在非堆内存中 [^2]。 ### Java虚拟机栈 Java虚拟机栈是描述Java方法运行过程的内存模型。它会为每一个即将运行的Java方法创建“栈帧”,用于存储该方法在运行过程中所需要的一些信息,包括局部变量表(存放基本数据类型变量、引用类型的变量、returnAddress类型的变量)、操作数栈、动态链接、当前方法的常量池指针、当前方法的返回地址、方法出口等信息 [^4]。 ### 示例代码展示栈帧概念 ```java public class StackFrameExample { public static int add(int a, int b) { int result = a + b; return result; } public static void main(String[] args) { int x = 5; int y = 3; int sum = add(x, y); System.out.println("Sum: " + sum); } } ``` 在上述代码中,`main` 方法和 `add` 方法在执行时,Java虚拟机栈会分别为它们创建栈帧,用于存储各自运行过程中的信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值