KMThreadPool: 7 – Conclusion

本文总结了任务型线程池的概念与使用要点,强调了最小化阻塞、合理分配数据以及谨慎处理任务间的依赖关系等内容。对于多线程编程初学者来说,是一篇很好的指导文章。

7 – Conclusion

Summary

In conclusion, the idea behind atask-based threadpool is to delegate methods and functions from all systems inyour program to all threads available on your computer. If you’re going to usethis threadpool or attempt to make one yourself, here are a few final things toremember:

  1. Block as little as possible. You don’t want a function to take too long on one thread, nor do you want it to hold up data that could be used by other threads (if you set up your tasks to do such). When dealing with lists and std::vectors, try breaking up the data into chunks and send them to the threadpool in multiple tasks.
  2. Use your own data! Unless you are a multithreading genius, try to use only data that your system has scope to. try to refrain from letting a task in Object[0] modify data contained in Object[1].
  3. Don’t send tasks from within another task! You’re asking for a plethora of threading issues right there.

Other than that, have fun! Goodluck with threading; its’ not an easy thing to conquer, but when you got it, itfeels rewarding. Leave me any comments or questions you have have!

References and Links

ThreadPool.QueueUserWorkItemMethod – This is a .NET method for C++, meaning you’d have to set up C++ touse garbage collecting and such. A bit of a hassle, but it does allow you tohave to only call this one method to use the thread pool.

Some Notes on Lock-Freeand Wait-Free Algorithms –  Information and links to various tools andlibraries regarding lock-free and wait-free algorithms. It’s targeted atdigital audio engineering, but the algorithms apply to all.

 

转自:http://keithmaggio.wordpress.com/code/c-win32-thread-pool-manager/7-conclusion/

六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,详细介绍了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程的理论与Matlab代码实现过程。文档还涵盖了PINN物理信息神经网络在微分方程求解、主动噪声控制、天线分析、电动汽车调度、储能优化等多个工程与科研领域的应用案例,并提供了丰富的Matlab/Simulink仿真资源和技术支持方向,体现了其在多学科交叉仿真与优化中的综合性价值。; 适合人群:具备一定Matlab编程基础,从事机器人控制、自动化、智能制造、电力系统或相关工程领域研究的科研人员、研究生及工程师。; 使用场景及目标:①掌握六自由度机械臂的运动学与动力学建模方法;②学习人工神经网络在复杂非线性系统控制中的应用;③借助Matlab实现动力学方程推导与仿真验证;④拓展至路径规划、优化调度、信号处理等相关课题的研究与复现。; 阅读建议:建议按目录顺序系统学习,重点关注机械臂建模与神经网络控制部分的代码实现,结合提供的网盘资源进行实践操作,并参考文中列举的优化算法与仿真方法拓展自身研究思路。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值